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1. Introduction

A Minkowski space is a finite dimensional normed real linear space; in
particular a Minkowski plane may be regarded as the set of real coordinate
pairs x =(xy, X,), y = (yy, ¥5), ..., with'a norm having the usual properties

x>0 if x#6=(0,0), |6]=0;
lax]=lal.lx|| forall realscalars a;
Ix+yll < lIxl + liyf -

With metric defined by d(x, y)=||x, y||, any Minkowski or Banach space is a
(Cauchy) complete metric space. An n-dimensional linear space L, may be
equipped simultaneously with a Euclidean norm or norm derived from an
inner product, and with a Minkowski norm |x||. It is well known that the
unit ball B= {x; ||x|| £ 1} for the Minkowski norm is a convex body, symmetric
with respect to the origin 8, and bounded in the Euclidean norm. Conversely,
any such convex body B in L, is the unit ball for a corresponding Minkowski
normin L, : for each y e L,, y # 6, there is a unique point x in the boundary of B
such that y=ax, a>0; define |y|| = a. The boundary C of B, the set of all
points of unit norm, will be referred to as the unit sphere of the Minkowski space.

A well known necessary and sufficient condition for a norm on a linear
space to be derivable from an inner product, and thus for the norm to be
Euclidean or Hilbertian, is that the von Neumann-Jordan parallelogram law

(1) 2{1x[* 4+ 2yl = Ix + yll* + |x — y|?

be satisfied by all pairs of vectors x, y from the linear space. In Fuclidean space
of dimension 2, any set of (n + 1) points in general position are the vertices
of a non-degenerate n-simplex. Iff the (n + 1) points lie in a subspace or flat of
k < n dimensions, then they are not in general position, and the simplex which
has the points as vertices is degenerate. In this paper a study is made of a
simplicial Euclidean characteristic of Minkowski spaces, in particular of planes.
It is shown that in case the simplicial Euclidean characteristic of a Minkowski
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plane is 2, then the norm must be Euclidean. A corollary is the known fact that
if it is assumed in advance only that the norm on a linear space satisfies 1
with the = sign replaced by either = or by <, then equality must hold and the
norm still must be Euclidean. Bounds are obtained for the minimum and
maximum possible values of the simplicial Euclidean characteristic, in terms
of the linear dimension n of the Minkowski space L.

Call a metric space having (n+ 1) points, in particular any subset of (n+1)
points of a metric space with the inherited metric, a metric (n + 1)-tuple; call the
(n +1)-tuple Euclidean in case it is congruent with a subset of (n+ 1) points of
Euclidean space. The affine hull of (n+ 1) points vg, ---, Un in a linear space is
of dimension at most n. By the Banach-Mazur theorem that C([0, 1J)isa
universal embedding space for separable metric spaces, any metric (n + 1)-tuple
is isometrically embeddable in a flat of dimension <n, and by translation, in a
Minkowski subspace of dimension 7. This paper addresses itself to a set of
questions of the following nature: When is an Euclidean (n+ 1)-tuple in
general position isometrically realizable as a subset of a Minkowski space of
dimension less than n? How much less than n may the dimension be? Is every
Euclidean 4-tuple (tetrahedron) realizable as a subset of the Minkowski plane
[27 Investigate the following notion of (n+ 1)-dimension of a metric space S:
the (n + 1)-dimension of S is the smallest integer k, such that each (n+ 1)-tuple
of S can be isometrically embedded in a Minkowski space of dimension £k.
What is the 4-dimension of three-dimensional Euclidean space E;?

2. A motivating example

The norm (p-norm) for a class of Minkowski spaces L5, 1 S p = 0, is defined
by fxl =(x/P + -+ + bl || = max(lxy, -, %)) for p=co. The space
[2=E, of course i Euclidean n-dimensional space; a norm is an inner product
norm iff it is a non-singular linear transform of the 2-norm.

Consider the plane L3, which is congruent with L} (by a 45° rotation and
change of Euclidean scale). The set of the four vertices of the unit sphere of
L2 are at mutual distance 2 from each other. Thus the configuration of the four
vertices is congruently embeddable in Euclidean space E; as an equilateral
tetrahedron or 3-simplex. This suggests the following

Definition. The simplicial Euclidean characteristic of a metric space S,
sEc(S), is = nin case thereisa subset of (n + 1) points of S which is congruently
embeddable in E, as a non-degenerate n-simplex. The sEc(S)=n in case n
is the dimension of the Euclidean simplex of largest dimension which is a
congruent image of (n+ 1) points of S; if sBc(S)=n for all non-negative
integers n, then sEc(S) = .

The simplicial Euclidean characteristic of a one-point space Sis0;ofa
space S having two or more points, at least 1. In case of an infinite set S, with the
discrete metric d(x,y) =1 if x % y, we have sEc(S) = 0.

Lemma 1. Any metric space (or subset) having three points is congruently
embeddable in Euclidean space.
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Proof. Denote the distances between the three points by a, b, c: in case
c=a+b, the three points are embeddable in a Euclidean line, and form a
degenerate triangle or 2-simplex. Otherwise we may label the distances so
that c2a, c2 b, and by the triangle inequality we have c<a+b. In the
Cartesian plane, the circle of radius a with center at (—c¢/2,0), and the circle
of radius b with center at (c/2, 0), meet in two points, such that either point,
together with the centers (—c/2), (c/2), are the three vertices of the required
Euclidean triangle (non-degenerate).

A subset of four or more points of § need not be congruently Euclidean
embeddable : for example in L%, the points §, =(1,0), d4,=(0,1), —6,, —9,
are at the mutual distances indicated in Figure 1, so both the upper and lower
triangles embed as degenerate triangles. The points 9, and —4§,, however, are
at positive distance 2 from each other; therefore a Euclidean embedding
preserving all the mutual distances of the four points is impossible.

Theorem 1. For the Minkowski planes L%, L, p# 2, we have 3 < sEc(LY)
=sEc(L3) <5, 3 < sBc(Lg). Also 7 < sEc(LY), 5 < sEc(L)).

Proof. As mentioned at the beginning of this section, the configuration
of the four vertices of the unit cell of L% is congruently embeddable as a non-
degenerate 3-simplex ; therefore 3 < sEc(L%). Similarly the eight vertices of the
cubical unit cell of L§ are all at distance 2 from each other, and likewise for
the six vertices of the octahedral unit cell of LY. Therefore the lower bounds
for the simplicial Euclidean characteristic of the three-dimensional Minkowski
spaces are as stated. The existence of the obvious isometry between L and L1
shows that the simplicial Euclidean characteristics of these two planes are equal.

For p>2, two of the triangles of the configuration of the four points
01+ 0y, 6,—6,, —6; —6,, 8, — 6,, having a common diagonal edge, may be
Euclidean-embedded by Lemma 1. The non-diagonal edges are of length 2,
while the diagonal is of length 2. 21/7 < 2.2/2 By the Pythagorean theorem,
the altitude on the diagonal is of length a given by a2 = (21/7)2 (22-2/P _ 1),
Since p > 2, the diagonal length 2. 2*/7 is less than 2a. For planar Euclidean
embedding of the configuration of four points, it would be necessary that the
diagonal length be equal to 2a. Thus the configuration congruently-Euclidean-
embeds as a non-degenerate 3-simplex. For p <2, a similar calculation shows
that the configuration of the four points & 1> 02, —8,, — &, (Figure 1) embeds as
a non-degenerate 3-simplex. Therefore for p+ 2, we have 3 < sEc(L3).

Finally, to show that sEc(L3) < 5, consider the congruent Euclidean embed-
ding of any configuration of six vertices pq, p,, ..., ps which is so embeddable.
The length of each edge in LY is measured either by its horizontal projection,
or by its vertical projection ; let edges be correspondingly designated as h or v
edges. From any vertex, say from p,, there are five edges ; at least three must be
alike; by 90° rotation if necessary we may suppose that the three like edges
are h. This is indicated in Figure 2. A triangle is degenerate if all three of its
edges are alike. For non-degeneracy in E; of the embedding of p, ..., Ds, it is
necessary that none of the triangles formed by subsets of three of the vertices

13+
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be degenerate. In Figure 2, for non-degeneracy of triangle pop:p;, edge p;p;
must be v; similarly for non-degeneracy of triangle p, p; Py, €dge p;p) must be v.
But then if edge p; py is v, triangle p;p;p, is degenerate; if it is h, triangle po p; Py

4
Pi
-4 ds Po
Pk
-62
Fig. 1 Fig. 2

is degenerate. Therefore a Euclidean-embeddable configuration of six vertices,
non-degenerate in its Euclidean embedding as a 5-simplex, is impossible in L7.
Therefore sEc(L3) < 5.

3. Classification of triangles and quadruples

It was noted above that a triangle in L7 is degenerate in its congruent
Euclidean embedding if all three of its edges are alike (three I’s or three v's).
In a triangle with only two like edges, the like edges enclose either an obtuse
(=90°) or an acute angle. 2
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Fig. 3

Lemma 2. If a triangle in LS has two h edges which enclose an obtuse angle,
then necessarily the third edge is also h, so that the triangle is degenerate in its
congruent Euclidean embedding.

Proof. In a Minkowski space, distances are invariant under translation;
translate the triangle so that the vertex at the obtuse angle is 6. Reflect in the
x,-axis if necessary so that the obtuse angle opens upward, and in the x,-axis
if necessary so that the left h edge is between the negative x,-axis and the line
x,= —X,,as indicated in Figure 3. Since the enclosed angle is obtuse, the other
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h edge must be below or coincident with the line x, = —x,, and the other below
or coincident with the line x, = x, (see Figure 3). If the third edge, extending
from the vertex of the left h edge, were v, then it could not intersect the line
X, =X, and thus it could not meet the vertex of the right h edge. Therefore
the third edge must also be h.

Call a configuration of four points a quadruple ; and in general a configu-
ration of k points a k-tuple. Let the polygon which is the outer boundary of the
convex hull of a k-tuple be called the outer convex hull of the k-tuple. A quadruple
of course is degenerate in case its outer convex hull is a degenerate triangle
(= configuration of three or four points in an algebraic line).

Lemma 3. A quadruple of L3 is degenerate, in its congruent Euclidean
embedding, in case its outer convex hull is a triangle.

Proof. If two like sides of the triangular outer convex hull enclose an obtuse
angle, then by Lemma 2 the quadruple contains a degenerate triangle. If two
like sides, say both h, enclose an acute angle, then the edge from the common
vertex of the two like sides, to the fourth point of the quadruple inside the outer
convex hull, also is h; therefore in this case the quadruple is degenerate by the
argument used in the proof, given in the preceding section, that sEc(L3)< 5.
Thus in-order that a quadruple be non-degenerate, it is necessary that its outer
convex hull be a quadrilateral.

Lemma 4. A quadruple of L3 is degenerate, in its congruent Euclidean
embedding, in case it has two like outer edges which are adjacent.

Proof. If the two like edges enclose an obtuse angle, then by Lemma 2 the
quadruple contains a degenerate triangle, and hence it is degenerate. If the
two like outer edges, say both h, enclose an acute angle, then the inner edge
between them also is h; hence the quadruple is degenerate by the argument
of the proof that sEc(L¥) < 5.

By Lemma 4, in order that a quadruple of L} be non-degenerate, it is
necessary that its outer edges in order be alternately h,v. In case such a
quadruple is congruently-Euclidean-embeddable, this condition is also
sufficient.

Theorem 2. For the Minkowski plane L%, the simplicial Euclidean charac-
teristic is 3.

Proof. Let py, ..., p, be the vertices of any S-tuple of LY which is congruently-
Euclidean-embeddable. In case the outer convex hull is a triangie, then by
Lemma 3 the 5-tuple contains a degenerate quadruple, so the 5-tuple is
degenerate. If the outer convex hull of the 5-tuple is a quadrilateral, then the
4-tuple, formed by the interior point and that triangle of the quadrilateral
which contains the interior point (or a triangle of the quadrilateral in case the
interior point is on the dividing diagonal), is degenerate by Lemma 3 ; therefore
in this case also the 5-tuple is degenerate. Thus for non-degeneracy of the
5-tuple, it is necessary that the outer convex hull be a pentagon. But the edges
of a pentagon cannot be alternately h, v; therefore the 5-tuple contains a
4-tuple which has two like adjacent edges ; this 4-tuple is degenerate by Lemma 4.
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Thus any congruently-Euclidean-embeddable 5-tuple of L 7 must be degenerate,
and Theorem 2 is proved.

Corollary 1. The simplicial Euclidean characteristic of L3 does not exceed 12.

Proof. For any 14-tuple, there are 13 edges from each vertex. In L%, lengths
are measured by their projections on either the 1, 2, or 3-axes. Among the
13 edges, since 4 + 4 + 5 = 13, there must be at least five which are alike, say 1.
For non-degeneracy of a congruent Euclidean embedding of the 14-tuple, all
edges involving the five vertices which are the other ends of the five like edges
must be 2 or 3. The projection parallel to the 1-axis, into the 2, 3-plane, of the
5-tuple formed by the five vertices, is congruent to a configuration in L3.
But by Theorem 1, the latter configuration is degenerate, so necessarily the
14-tuple (= 13-simplex) is degenerate. Therefore 12 = sEc(L3).

4. Combinatorial corollaries and problems

The result sEc(L%) < 4is purely combinatorial, but sEc(L%) = 3 is geometric.
For Figure 4, for example, shows a configuration of five vertices in which no
triangle has three like sides; this verifies that N(3, 3,2)= 6. Since in Ramsey’s
theorem [3, pp. 38—43], N(3,5,2)= 14, we have that any configuration of
14 vertices, with three kinds 1, 2, 3 of edges, contains either a triangle with all
sides 1, or a 2, 3, 5-tuple (= a S-tuple with all sides 2 or 3). This is an alternate
proof of Corollary 1. Since Ramsey’s theorem and N(3, 5, 2)= 14 yield also
either a triangle with all sides 2, or a 1, 3, 5-tuple, and either a triangle with all
sides 3, or a 1, 2, 5-tuple, it would seem that it should be possible to reduce the
upper bound 12 for sEc(L%) (a triangle with all sides i, or a j, k 5-tuple, for
i=1,2, or 3, j, k#i, would be sufficient for degeneracy of the corresponding
simplex). To decide whether n may be less than 14 seems to the writer to be a
non-trivial combinatorial problem. Use of the Gleason-Greenwood result
[3, p.42; 2, p. 61], that N(3,4,2) =9, yields still another proof of Corollary 1,
but again does not improve the bound: In any configuration of n vertices,
in which one vertex has nine j or k edges issuing from it, the sub-configuration
of the nine end-points of the edges contains either an i triangle or a j, k 4-tuple.
The latter together with the vertex constitute the required j, k 5-tuple. In case
n=14, since 13=4+4+ 35, each vertex has at least nine j or k edges issuing
from it for some j, k. (This property at one vertex would be sufficient.) For
n=13, if five edges from one vertex are alike, we have the desired conclusion;
but in a 13-configuration with exactly four edges of each kind 1, 2, 3 from each
vertex (such is possible with a spreadeagle pattern from each vertex, but the
configuration contains like triangles), we do not have any vertex having nine
edges which are only j or k.

For two kinds h, v of edges, define K (3, g, 2) to be the least integer, such that
it is certain that for each vertex of an n-configuration with n 2 K, there is
either a like triangle (= a triangle with all sides alike) containing the vertex,
or a like g-tuple not containing the vertex. Define K(g, 3,2) to be the same
except that “like triangle” and “like g-tuple” are interchanged.
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Combinatorial Corollary 2. We have K(3,4,2)< 8, K(3,5,2) < 10, K(3,9,2)<
£2q, in contrast to the Ramsey N(3,4,2)=9, N(3,5,2)=14. Also K (3,3,2)
=N@3,3,2)=6,K(q,3,2)=7forq>3.Incase ofa 6-configuration, N(3,3,2)=6,
the conclusion of the Ramsey theorem is only that there is a like triangle;
we have the (at first apparently) stronger conclusion that for each vertex there
is either a like triangle containing the vertex (with the kind of edge which
is most numerous at the vertex), or a like triangle not containing the vertex
(with the other kind of edge).

Proof. For n2(q—1)+q+ 1, there are at least q like edges from each
vertex, and accordingly there is either a like triangle containing the vertex,
or a like g-tuple (with the other kind of edge) which does not contain the vertex.

In a 7-configuration, since N(3, 3, 2) = 6, each sub-configuration of six vertices
contains ‘a like triangle. There is a 6-configuration, containing a 5-sub-
configuration as in Figure 4, with a vertex (the remaining vertex) for which there
is neither a like 4-tuple containing it, nor a like triangle not containing it.
Therefore for g > 4, we have that K(g,3,2)=1.

Definition. For three kinds 1, 2, 3 of edges, define V(p, 4,2) to be the least
integer such that an n-configuration with n 2 Vis certain to include, for each
vertex, either a p-tuple with all sides i containing the vertex, or a j, k g-tuple
not containing the vertex. Let M(p, g, 2) be the least integer such that if n > M,
the configuration is certain to include either a like p-tuple, or a j, k g-tuple.

Combinatorial Corollary 3. We have V(3,3,2)=M(3,3,2)=N(3,3,2)=6,
and M(p,q,2) £ V(p, q,2). Also V(4,3, 2)=9, ¥(3,4,2) < 11.

Proof. The first statements are immediate. Given any vertex of any 9-con-
figuration, since 8 =3 + 3 + 2, there are not more than two of some kind of edge,
say i, from the vertex. The remaining six or more edges from the vertex are
all j, k; since N(3, 3,2)=6, the configuration of the other ends of the non-i
edges contains either an i triangle, or a j, k triangle. In the latter case, the
configuration of the vertex and the J k triangle is a j, k 4-tuple, as required.

At each vertex of an 11-configuration, in which there are three kinds
1, 2, 3 of edges, since 3+3+4= 10, there must be at least four like edges;
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either the other ends of the four edges constitute a j, k 4-tuple, or there is an
i triangle at the vertex.

Combinatorial Corollary 4. We have M(p,q,2)SN(p,q,2), V(3,5,2)= 14,
V(3,9,2)<3q—-1, V(5,3,2) < 14.

Proof. If n= N(p, q,2), then the configuration contains either a 1 p-tuple
or a 2, 3 g-tuple, also either a 2 p-tuple ora 1,3 g-tuple, and either a 3 p-tuple
ora 1, 2 g-tuple; while n=M(p, g, 2) requires only either an i p-tuple or a j, k g-
tuple. Therefore M(p,q,2) S N(p,q, 2). The proof of the statement about
V(3,4,2) is similar to the proof above that ¥(3,4,2) <11. The proof that
¥(5,3,2) < 14 uses the fact that N(3, 4, 2)=09, and is similar to the proof that
V(4,3,2)<9.

5. Minkowski planes

With any two vectors x, y of L,, there are associated two parallelograms:
one having vertices 6, x, y, x + y; the other having vertices 8, x+y x—y,2x
By Lemma 1, each of the two triangles having a diagonal of a parallelogram
as common side is congruently Euclidean-embeddable. The parallelogram
evidently is congruently Euclidean-embeddable if and only if the one diagonal
is not longer than the Euclidean length of the other diagonal of the Euclidean
parallelogram which is the isometric image of the two triangles. It is also clear
that the parallelogram of L, embeds as a non-degenerate 3-simplex if and only
if the Minkowski length of the other diagonal is shorter than the length of the
diagonal of the Euclidean parallelogram. If we have inequality in the parallelo-
gram law (1), in case the = signin (1)is replaced by >, the diagonal is too short
in the parallelogram having vertices 0, x, y, x+ y, s0 the parallelogram con-
gruently Euclidean-embeds as a non-degenerate 3-simplex. In case the = sign
in (1) is replaced by <, the diagonal of the first parallelogram is too long for
congruent Euclidean-embeddability, but the diagonal of the second parallelo-
gram again is shorter than necessary for embeddability as a planer paral-
lelogram: 4 |x||> + 4||lyl|> <2 lx + y|® + 2[|x — yl|*. Therefore the second par-
allelogram congruently Euclidean-embeds as a non-degenerate 3-simplex.
Thus we have

Theorem 3. In case the norm in a Minkowski plane L, satisfies (1) with =
replaced by = for all x, y€ L,, then necessarily the norm is Euclidean and (1)
holds for all x, ye L,. A similar statement is true in case the norm satisfies (1)
with = replaced by <. The sEc(L,) is 2 iff the norm is Euclidean ; otherwise it is
at least 3.

Whether or not the sEc(L,) may be greater than 3 for a Minkowski plane L,
remains an open question. Each side of a planar regular pentagon is parallel to
a diagonal. Consideration of the possibility of Euclidean embedding of a convex
pentagon from a Minkowski plane indicates that in case the pentagon has
one side parallel to a diagonal, embeddability of one quadrilateral from the
pentagon as a Euclidean 3-simplex (one diagonal shorter than planar Euclidean)
implies that another quadrilateral (consisting of two triangles having as common
side the side of the pentagon which is parallel to the diagonal) is not Euclidean
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embeddable at all (because the vertices of the two triangles are nearer than their
planar Euclidean distance). Therefore if a Minkowski plane L, possibly can
have sEc(L,) = 4, the pentagon which embeds as a Euclidean 4-simplex must
have its sides and diagonals in ten different directions. So far as the mutual
distances of the vertices of the pentagon are concerned, the norm in the
Minkowski plane can be replaced by one which has a symmetric icosagon for
its unit sphere.

For n+ 1 points which are the vertices of a planar polygon such that the
(n+ 1)n/2 edges and diagonals of the polygon all have different directions,
there exists a polygon with (n + 1)n vertices, symmetric in the origin, such that
the chords with mid-points at the origin have the directions of the edges and
diagonals. Therefore there always exists a symmetric semi-norm, i.e., a function
satisfying p(x) Z 0, p(x) = 0 iff x = 6, p(Ax) = |4| p(x) for all real scalars 4, having
a polygonal unit sphere, to realize any prescribed lengths of the edges and
diagonals. Thus the simplicial Euclidean characteristic of a plane with such
a semi-norm may be arbitrarily large.

It should be possible to use the Blumenthal determinantal condition
[1, pp. 98—100] to show that if the simplicial Euclidean characteristic of a
semi-normed plane is sufficiently large, then the semi-norm cannot be a norm;
ie., the star-shaped unit sphere for the semi-norm cannot be convex. For
congruent Euclidean embeddability of a pentagon as a non-degenerate 4-
simplex, the Blumenthal necessary and sufficient condition is that deter-
minants D,, D,, D,, D, have alternating signs, where d;; is the distance from
vertex i to vertex j (vertices numbered 0, 1, 2, 3, 4),

0 1 1 1 1 1

1 0 d, db, dis  dia
D, = 1 di, O d, di; di, ,

1 & di 0 diy di,

1 dj, di; 4, 0 i,

1 di, di, di; diy O

and D, D,, D, are the similar sub-determinants in the upper left corner of D,.
That sign D, = +, sign D, = —, follows from the hypothesis that triangle 012
of the pentagon embeds as a non-degenerate Euclidean triangle.

6. Metric 4-tuples in the max normed plane

Any metric triangle (= any Euclidean triangle) can be realized in L%, with
the longest side in any desired direction. For let the sides of a given non-
degenerate triangle be a, b, ¢, witha<b = c; by horizontal-vertical symmetry
we may assume that side c is measured by its horizontal projection. Then regard-
less of the horizontal direction of the side of length ¢, the opposite vertex may
be taken to be the (unique) point of intersection of a horizontal side of a 45°
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right triangle with sides a, and of a vertical side of a 45° right triangle with
sides b, to realize the given triangle.

Theorem 4. Not all metric 4-tuples, and in particular not all Euclidean tetra-
hedra, are realizable in L.

Proof. Let the sides of a given 4-tuple be a, b, ¢, d, e, f, with f the longest
side, or one of the longest sides. Let respectively a, b, f; c, d, f be the sides of
the two triangles of the 4-tuple which have the common side f. Then since as
remarked above the positions of the opposite vertices are uniquely determined,
their possible distance apart, e, also is uniquely determined. Thus L% contains
only one representative of the interval of all 4-tuples which have adjacent
faces a, b, f; ¢, d, f. Therefore as asserted there are many metric 4-tuples,
including Euclidean tetrahedra, which are omitted from L7%.

We now desribe some of the 4-tuples and tetrahedra which are included
in L%. Let vertices g=(—1, 1), r=(—1, —1), s=(1, —1) be fixed, and let a
fourth vertex p=(1 +¢, 1 +t) vary with the real parameter ¢t. For -1 5t <2 -
- 3% - 2, the metric 4-tuple is non-Euclidean; at t =2 -37* — 2, it is Euclidean
planar; and for 2-3"t-2<t <00, it is a symmetrical Euclidean pyramid,
with base an equilateral triangle of side 2, the common length of the other
three sides being (2 +t). For variable fourth vertex p=(1 +¢, 1), at

t=2(2+3Ht—1),

the 4-tuple is Euclidean planar; for larger ¢ it is non-Euclidean; and for ¢
between — 1 and the planar value, it is a Euclidean tetrahedron.
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