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Partitions Induced by Linear Function-Spaces

ANDREW SoBCZYK
Department of Mathematics, Clemson University, Clemson, S. C.

1. Introduction

For a set S, by a partition let us understand
an expression S =1+ A, over all.i in an index
set I, where the A,’s are distingt, incomparable
by inclusion, but not necessarily disjoint. By a
decomposition let us understand a, partition in
which the Ay's are required to be disjoint. An
equivalence relation ¢ in S, as is well-known,
induces a corresponding decomposition of S
such that s « s' if and only if s and s’ belong to
the same A;; we refer to the subsets. A‘ as a-sub-
sets. Let us write (s, s'), in case s, s are in the
binary relation of belonging to the same subset
of a partition, and similarly refer to the sets
Ai of the partition as ( ).-subsets. Equivalence
is a binary relation; we shall consider a se-
quence of respectively binary, ternary, quater-
nary, . . . relations in S, and when sets of ele-
ments of S are in those relatloné we shall write
(s, 8)g, (5,5,8)s, (s,5,5", 5 ), .... Max-
imal subsets of mutually ( )3- ( )4 N (8
lated elements will be called ( ) g-subsets,
( )y4-subsets, . . . .

After discussion of the cases n = 1 through
n = 3, the ( ),-subsets are shown to be con-

stituted of the elements which are involved
in the subsets of an equivalence detémposition
of a certain subset of a Cartesian product
S XS X...XS. The ( ),-subsets, and the
equivalence decompositions of the subset of the
Cartesian product, may be considered to be
induced by, and are characterized in terms of,
a linear space D(S) of real-valued functions
on the set S, or an arbitrary linear subspace M
of such a space.

A later publication will be concerned with
applications of the results of this paper. For
example, when the space D(S) is the space
C(S) of all real continuous functions, on a
topological space S, the partitions possibly in-
duced by linear subspaces M ( C(S). reveal
topological characteristics of S, and in ‘par-
ticular for finite dimensional M, properties of
mappings on S to Euclidean spaces. (See

(11

2. An Equivalence Relation;
One-Algebraic Homogeneity
Denote by D(S) an arbitrary linear space
of real functions on the set S. For any linear
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subspace N of D(S), call a subset {sy, . . ., St
a set of rank n for N (or an n-rank set), and
say that the n points are n-separated by N, if
arbitrary real values ry, . . ., r, may be fitted at
Sy - + Sy by some function from N; ie., if
given any ry, . . ., Iy, there always is a function
x £ N such that x(s;) = 13, . . ., X(8p) = I
Define (s, s')5 in case {s, s’} is not a set of rank
2 for N; (s, s, s”)3 in case {s, s’, s} is not a
set of rank 3 for N; . ... Let us say that a sub-
space N of D(S) is n-algebraically homoge-
neous in case each subset {s, . . ., s,} of n dif-
ferent points of S is a set of rank n for N.
Clearly if N is n-algebraically homogeneous, it
must be at least n-dimensional. If N is n-al-
gebraically homogeneous, then it is also k-al-
gebraically homogeneous for each k < n.

Let O = O(N) be the subset of S on which
all functions of N vanish, and denote the empty
set by ¢. Then for a linear subspace N, the
condition O = ¢ is satisfied if and only if N is
1-algebraically homogeneous.

Tarorem 1. In case O = @, the relation ( )2
is an equivalence relation in S.

Proof. Suppose (s, s')p and (s’, s")o. Then
there exist relations of linear dependence ax(s)
+ a’x(s’) = 0, b'x(s") + b"x(s") = 0, for
all x ¢ N. Eliminating x(s"), we obtain b'ax(s)
— a’h”x(s”) = 0. This is a relation of linear
dependence, so that ( )g is transitive, unless
both ba = O and b”a’ = 0. But the latter
imply either b’ = 0 and a =0, ora=0and
b” = 0, since b’, b” are not both zero, and a,
a’ are not both zero. If b’ = 0, a’ = 0, then
x(s) and x(s") are identically zero for all
x £ N, contrary to the hypothesis that O = 9.
Similarly, if a = 0, b” = 0, then x(s) =0
for all x £ N, again contradicting the hy-
pothesis. Therefore ( )2 is an equivalence re-
lation.

In case N contains a nowhere-vanishing
function, then obviously we have O = 9.
For an infinite set S, if N is the subspace of
all finite linear combinations of the character-
istic functions of the points of S, then O = o,
but N does not contain a nowhere-vanishing
function.

Lemma 1. If two functions x, y on a set S
have respective cozero-sets ( complements of
sets on which they wvanish) A, B, with
S = AU B, and if the cardinality of A B
is less than the power of the continuum, then
there exists a linear combination ax + by which
wanishes nowhere on S.

Proof. Any linear combination ax + by with
a 7 0 and b 5= 0 does not vanish on (A — B)

[Spring

v (B — A). For fixed a 5 0, the equation
ax(s) -+ b’y(s) = 0 has a solution b" = b'(s)
# 0, for each s € A n B. By hypothesis, the
set of solutions {b’} cannot be the set of all
non-zero real numbers; therefore there exists
a b s« 0 such that ax + by does not vanish on
A A B. Since both a and b are different from
zero, the function ax + by vanishes nowhere
on S, as required. Even if A ~ B has the
power of the continuum (or higher power), a
linear combination ax + by which vanishes
nowhere on S exists unless x(s)/y(s), like the
real or imaginary part of a complex analytic
function in the neighborhood of an essential
singularity, assumes every possible non-zero
value on A ~ B.

THEOREM 2. If a finite set of fumctions x,,

., Xm from a subspace N have respective
cozero-scts Ay, . . ., Ay, which form a parti-
tion of S, such that for each i, j, i #* j, the
infersection Ay ~ Ay has cardinality less than
the power of the continuum, then there exists a
function y ¢ N (a linear combination of x,,
.+ s Xp) which vanishes nowhere on S.

Proof. By hypothesis and by Lemma 1, there
exists a linear combination a;x; + asx, which
does not vanish on (A; ™ A,). Then again
by hypothesis and by Lemma 1, there exists a
linear combination of (a;x; + asxe) and of
xg which vanishes nowhere on (A, \w As)
v Ay; continuing in this way, we obtain the
required y as a linear combination of x4, . .
Xn-

CoroLLARY 1. In the space C(S) of all real
continuous functions on a topological space S,
let N be any linear subspace which does not
contain a unit (any ideal of the ring C(S), for
example) and which is such ihat there is a
covering of S by cozero-sets of functions from
N. Then in case there is a covering of S by @
finite subset Ay, . . ., Ay of cozero-sels, there
exists a pair Ay, Ay 1 7 j, whose intersection
Ay A A, has at least the power of the con-
tinuum. The corresponding functions Xy, Xy
are such that x;(s)/x;(s) assumes every non-
zero real value on Ay M Ay,

In case S is compact, of course finite sub-
coverings do exist (but since each ideal in
C(S) then is fixed [1], any subspace N as
described in the Corollary is not contained in
an ideal, and therefore generates the entire
ring C(S)).

3. Separation of Points

If a subspace N of D(S) contains constant
functions, then O = o, and the relation ()2
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for N is the ordinary relation of nonseparation
of points of S. That is, in case N contains
constants and separates points of S, then the
{ )o-subsets are singletons.

TueoreM 3. For any 2-algebraically homo-
geneous space N, the ( )q-subsels dre single-
tons. If a subspace N contains the constant
functions and separates points, thew it is
2-algebraically homogeneous. A subspace N
may separate the points of S, without being
2-algebraically homogeneous, or even l-alge-
braically homogeneous. If a subspace N is
2-algebraically homogeneous, then it separates
points, but it does not need to contain the con-
stant functions.

Proof. If N is 2-algebraically homogeneous,
then O = ¢ since a 2-algebraically homogeneous
space must be 1-algebraically homogeneous. By
Theorem 1, ( )» is an equivalence relation, and
by the hypothesis that N is 2-algebraically homo-
geneous, (s, s')p if and only if s =s". 1f N sep-
arates points and contains constants, then if
s+, x(s) # x(s), some scalar multiple ax
will realize a prescribed difference of values at s,
s, and for a suitable constant ¢, ¢ + ax will fit
the prescribed values at s, s’. Therefore N is
2-algebraically homogeneous. A function which
has different values at all points of S separates
the points of S, so if the cardinality of S does
not exceed the power of the continuum, the
points of S may be separated by a one-dimen-
sional subspace N. A single separating func-
tion may assume the value zero at one point.
For S of larger cardinality, there may of
course be a decomposition of S into sets of
cardinal numbers not exceeding the power of
the continuum, and corresponding functions
in N which separate points, such that no set
of two points from the same subset of the
decomposition are 2-separated by N. In case
N is 2-algebraically homogeneous, then for
s, s, s 7 s, of course there is an x ¢ N with
x(s) ¢ x(s"). The subspace N of all finite
linear combinations of characteristic functions
of the points of an infinite set S is n-alge-
braically homogeneous for each n, but does not
contain constants. '

Let S be the circumference 0 < s < 2%
where s = 0 and s = 2w are identified. The
two-dimensional subspace N, spanned by the
functions sin s, cos s on S, separates points of
S, but does not contain constants, and is not
2-algebraically homogeneous. The ( )g-sub-
sets consist of pairs of antipodal points: ( points
s, s’ such that s — s’ = = =x).
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4. Subsets of Mutually ( ),-Related
Elements :

Recall the definitions of n-rank set and of
( )u-subsets at the beginning of Section 2.

TuroreM 4. Suppose that O = ¢. If (s, 8,
S")3 and (S: t)2: (S': t’)2: (S”; t")2: then (t: t';
t”)s. Thus the relation ( )g may be considered
to be defined for the ( )g-subsets as elemenis,
with s, s, s” replaced by the respective ( o=
subsets which they represent.

Proof. Since by hypothesis O = ¢, neither
of s, t is { );. Therefore there is a relation
of linear dependence ax(s) + bx(t) = 0, with
a # 0, b 0. Since (s, s, s”)3 we have
ex(s) + ¢'x(s") + ¢"x(s") = 0, with ¢, c,c”
not all zero. Replacing x(s) by (—b/a)x(t),
we obtain (t, 8, s”)s. Similarly s” may be re-
placed by t', and s” by t".

TaEoREM 5. Suppose that O = ¢. If s3

.., s, are not ( Yn_q-related (ie., if {sy, . . o
su} 1s an (n — 1)-rank set), and if (81, + + o
$n)ar (52, « - o Snt+1)m thenm sy, iy Sag1 are
mutually ( ),-related (ie., each subset of n
of S+ + o Sug1 is ( )y-related).

Proof. By hypothesis, there are relations of
linear dependence a;x(s;) + ...+ a,x(s,) =
0, hax(se) + ... + bpp1x(Sup1) = 0, in which
a; # 0. For if a; (or byy,) were zero, {sg,

. ., 8.} would not be an (n — 1)-rank set. By
combining these equations, x(sg), - - = x(sp)
may be eliminated in turn, to obtain a relation
of linear dependence, since a; » 0. This im-
plies (51, 83, - - o Sat D + - = (81, - = » Sa—1s
Se410n (Ifa coefficient of x(s;) in one of the
equations is zero, that equation already implies
that the other n s;’s are ( ) -related.)

CororLary 2. If A = Bw {sy, . . o Saby
where {sa, . . ., sy} is an (n — 1)-rank set, and
if each s & B is such that (s, sa, . . - Su)ns then
A is a mutually ( )y-related subset.

Proof. Since {sg, . . ., sy} is an (n — 1)-rank
set, for t;, . . ., ty € B, by hypothesis we have
relations of linear dependence x(t;) + 2% (8g)
4.+ ax(s) =0, ..., x(t) + dox (s2)
+ ...+ d;x(s,) = 0. Eliminate x(sy) from
(k — 1) pairs of these equations; then x(sg)
from (k — 2) of the resulting equations; and
so on to obtain a relation of linear dependence
involving x(t;), .. - x(ty), k = n, which shows
that (tg, « - o tw + - o Sp)p- Similarly any
(k — 1) of the x(s;)’s may be eliminated.

TueorEM 6. Any proper maximal subset
of mutually ( )y-related elements contains an
(n — 1)-rank set.

Proof. For suppose that s is outside the
maximal subset. Then there exist some (n — 1)
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elements in the subset which are not ( ),-re-
lated with s. This implies that s and the
(n — 1) elements are an n-rank set. There-
fore in particular the (n — 1) elements are an
(n — 1)-rank set.

5. Equivalence of Rank Sets

In this section we introduce an equivalence
relation in the subset of n-rank sets of the
set S X S X ...X S (Cartesian product of S
with itself n times). For a subspace M of
D(S), consider the dual space M* of all real
linear functionals on M. For each fixed s £ S,
s*(x) = x(s) is an element of M*. Define a
mapping @ on S to M* by 9(s) = s*. Clearly
the mapping ¢ is one-to-one if and only if M
separates the points of S, and M is 1-algebra-
ically homogeneous if and only if no point of
S is mapped by ¢ into the origin of M*.

Calt the singletons {s}, where the point s is
such that (s); (i.e., such that all functions
x £ M vanish at s), O-rank sets. If {s} is not
a O-rank set, it is a 1-rank set. If M separates
points, then {s} is a O-rank set for at most
one point s of S. If M is one-algebraically
homogeneous, then there is no s such that {s} is
a O-rank set. Suppose that M is 1-algebraically
homogeneous, but does not necessarily separate
points of S. Two l-rank sets {s;}, {sg} are
such that x(sg) = cx(sy), ¢ fixed, for all
x & M, if and only if (sy, S2)o.

DerintrioN. Two n-rank sets, {sy, . . - Sp}
and {t;, . . ., t,}, are ~ related if and only if
8% .. spfand ¥, . t,*, span the same lin-
ear subspace of M*. Relation ~ evidently is an
equivalence relation on the subset of n-rank sets
of S X S X ...X S. The two n-rank sets are
A-related in case there is a common n-dimen-
sional subspace E, of M which fits arbitrary
values at s;, . . ., S, and also at t;, . . ., ts
(The reflexive and symmetric relation 2 is not
an equivalence relation.)

THrEOREM 7. For an n-rank set {sy, . . ., Su},
the linear functionals si*, . . ., s,* span an
n-dimensional linear subspace E* of M*.

Proof. By the hypothesis that {s;, . . ., 53}
is an n-rank set, there exist functions x(1}, ..,
x(® g M such that the determinant | {x®
(s;)} | does not vanish. Thus | {s*(xM)}
| % 0, which implies that {x*), ..., x™} is an
n-rank set for the subspace E * of M* which is
spanned by s;*, . . ., s,*. Therefore E.* is
n-dimensional.

TueoreMm 8. The equivalence relation ~ re-
fines (i.e., implies) the relation . That is,
whenever for two n-rank seis {s;}, {t;}, we have
{s;} ~ {t;}, it follows that {s;} X {t,}.

[Spring

Proof. Let E.* be the n-dimensional sub-
space of M* which is spanned by sy*, . . ., s *
and also by t,*, . . ., t,*. By Theorem 1 of [2],
there exist n functions x) .. ., x(® ¢ M which
form an n-rank set for E *. Accordingly the
determinants | {sp*(x®)} | = | {xW(s)} |
and | {t*(x")} | = | {xP(t;)} | do not van-
ish; that is, the n-rank sets {s;} and {t;} both
are n-separated by the n-dimensional subspace
E, of M which is spanned by the functions
x®, o, x®,

THEOREM 9. Suppose that O = ¢ and M is
finite dimensional. If {s,, . . ., s} 1s a k-rank
set, representative of a ( )yyy-Subset, then all
the functions x of the subspace L = {x ¢ M:
x(sy) = 0, j = 1,.. ., k} venish at a point
t € S if and only if t belongs to the ( )y y-sub-
set. Thus @ ( )yyq-Subset is uniquely deter-
mined by each k-rank set which it contains, and
{sy, . . ., 5x} 15 @ singleton k-rank set if and only
if for each t € S-{sy, . . ., sk}, there exists a
function x of L such that x(t) # 0.

Proof. Since M is finite dimensional, by
Theorem 1.9-G on p. 51 of [4], the subspace K*
which is spanned by s;*, . . ., sg* is algebra-
jcally saturated [4]. Therefore it follows
necessarily, by Theorem 1.9-E on p. 50 of [4],
that if x(t) = 0 for all x e L, then t* £ K*,
and conversely that if t* ¢ K*, then x(t) = 0
for all x e L.

TueoreM 10. Suppose that O = ¢. Each
proper mazximal ( )y .y -subset consists of those
elements of S which are contained in the k-rank
sets of a ~ equivalence subset of k-rank sets.

Proof. By Theorem 6, the ( )k+1-Subset
contains a k-rank set {sy, . . ., 5. 1ft § {8y,

. . S but t is in the ( )yii-subset, then
(Sg, + « + S t)x41, SO that x(t) =.¢yx(8) +
...+ cxx(sy) for all x ¢ M; ie, t* = cys1¥
4+ ...+ cgsg* Therefore t* is contained in
the linear span K* of s,*, . . ., sc*, and t* to-
gether with some (k — 1) of 5%, .. sy span
K*. If x®, ..., x® ¢ M are a k-rank set for
K*, then the determinant, which has for columns
{x®(t)} and (k — 1) of the k. columns {x®
(sy)}, does not vanish. Therefore t and .the
k—1ofs,...,s area k-rank set. In case
a k-rank set {t, . . .; t,} is equivalent to {s3,- - s
sy}, then since K* is k-dimensional, we have
(Sl, o ooy Sk tj)k+1 for j = 1, Y k. The
theorem is proved.

In case K* is not. algebraically saturated,
then there may exist a t, not in the ( Ixs4r-
subset which is determined by the k-rank set
{sy, . . - i}, such that t* vanishes at all func-
tions where s,*, . . ., s* do, but t* is not con-
tained in K*. The characterization of Theorem
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9, of a ( )xy1-subset as the subset of ele-
ments of S, where the functions x of M which
vanish at a k-rank subset {s;, . .., sy} of the
( )i41-subset, must also vanish, seems to be
available only when the subspace M is finite
dimensional.

Derinition. Two k-rank sets, {s,, . . ., 8x},
{t,, . . ., tg}, are ~ related in case the subspaces
L of functions which vanish at s,, . . ., S, and
L; of functions which vanish at t;, . .
coincide.

TreoreM 11. The equivalence relation ~ is
a refinement of the equivalence relation =,
which in turn is o vefinement of the relation
% (See Theorem 8.) In case M is finite di-
mensional, the two equivalence relations coin-
cide.

Proof. The first and last statements are evi-
dent after the paragraph preceding the definition
of ~, in consequence of Theorem 9. If t* is a
linear combination of s,*, . . ., s*, then x(t) is
a linear combination with the same coefficients

* tky

of x(s;), . - -» X(8g), so x(t) vanishes for all
xeL. If {sy, .. ., 5} = {t;, . . ., ti}, then the
k-rank sets {s;, . . ., s}, {t;, . . ., ti} not only

have a common fitting subspace Ey of M, but
also the functions of E, stmultaneously fit arbi-
trary values of functions of M at s, .
and at ¢y, . .

. o Sk
., ty. Any algebraic complement L
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in M of E, thus must consist of all functions
which vanish at s, ..., sgand also at t, . . ., &
(See [31.)

Call a subspace E, M a fitting space for
a subset R of S, in case for each function z of
M, there is a function x of Eq which coincides
with z on R. In case a pair of k-rank sets
{sy, . . s} and {t;, . . ., t} are »-related but
not =~ related, then they have a common fitting
space E; which is not a simultaneous fitting
space, i.e., not a fitting space for the subset
{sy, .. S ty, . - -t} (To fit arbitrary values
at sy, ... S ty, . - » ty, @ subspace of M would
have to be at least (2k)-dimensional.) The
relation of having a simultaneous fitting space
is the same as =.
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