~ RANK-SETS AND RANK-SPACES IN LINEAR

' Reprinted"‘ftomv.ithe‘AMERI(SAN.I\IATHEMATICAL MonTHLY
Vel 72, No. 1, January; 1965




RANK-SETS AND RANK-SPACES IN LINEAR FUNCTION-SPACES
ANDREW SOBCZYEK, University of Miami

Let S be a set which contains at least two points, and denote by D(S) an
arbitrary linear space of real-valued functions on S. For any linear subspace
LCD(S), the variety A determined by L is the maximal subset of S on which
all functions of L vanish. If L separates points of S, then A4 either is empty or
contains a single point; in the latter case the point may be removed from .S with-
out changing the linear space D(S). The nullity of a subset B CS is the Hamel
cardinal dimension of the subspace D5(S) of all functions which vanish on B.
Varieties 4 which contain B may be determined by various proper subspaces
L of Dg(S5).

For a subset B of S, if a linear subspace K CD(S) has the property that for
each function z of D(S), there is a function w of K which coincides with z
throughout B, we shall say that K fits arbitrary functions of D(S) on B. Call
the subset B a rank-set associated with K, relative to D(S), in case K fits arbitrary
functions of D(S) on B, and if furthermore there is no proper linear subspace K,
of K which has the same property. In this case call K a rank-space associated
with B, relative to D(S).

THEOREM 1. I ff a subset BCS has nullity gero, it is a rank-set associated with
the entive space D(S).

Proof. Suppose that B is a rank-set associated with D(S). Then if the nullity
of B were not zero, there would be a function ¥€D(S) which vanishes on B
and which is not the zero-function . Let H be any algebraic complement in
D(S) of the one-dimensional subspace of scalar multiples of %; then on B, H fits
the values of arbitrary functions vy D(S), contrary to the hypothesis that there
is no proper subspace of D(S) which has this property. Therefore there is no
function %6 in D(S) which vanishes on B ; i.e. the nullity of B is zero.

Suppose that B has nullity zero. Then for any function vED(S), of course v
itself fits the values of v on B. Therefore D(S) is the rank-space associated
with B provided that it has no proper subspace which on B fits the values of
each v&D(S). If there were such a subspace, there would be some v&D(S) and
#&D(S), u not identical with p on S, with =9 on B. But then (u—v) would be
a function which vanishes on B, and which on S is different from the zero-func-




32 MATHEMATICAL NOTES {January

tion 6, contrary to the hypothesis that B has zero nullity. Thus the rank-space
associated with B is the entire space D(S).

As an example of Theorem 1, if Sis a closed region of the x, y-plane, bounded
by a simple closed curve B, and D(S) is any linear space of functions which are
continuous on S and harmenic in the open region bounded by B, then since by
the maximum principle B has nullity zero for harmonic functions, the boundary
B is a rank-set associated with the entire space D(S). By Theorem 1 of [2], for
any n-dimensional space D(S) of harmonic functions on S, there exist rank-sets
of n points on B. Further examples and applications to curve-fitting are suggested
by reference [1] (brought to the author’s attention by J. H. Curtiss).

TaEOREM 2. A subspace K of D(S) is a rank-space, with B as an associated
rank-set, iff K is an algebraic complement (see 21) of Ds(S).

Proof. Suppose that B is a rank-set with K as an associated rank-space.
Then for any 2 D(S), by hypothesis there is a function x which fits 2 on B, so
the difference z—x =7 is in Dp(S). Assume that vE€ D(S) is not the zero-function
9, and 9€ Dp(S)NK. Then a hyperplane K, in K which is an algebraic comple-
ment of the one-dimensional space {cv} fits the functions of D(S) on B as well
as K does, contrary to the requirement of the definition of K as a rank-space.
Therefore Dp(S)MNK = {0} , and D5(S) and K are algebraic complements.

For the converse, if D5(S) and K are algebraic complements in D(S), then
for each &€ D(S), we have uniquely'z=x+y, €K, yEDp(S). Therefore x and
s coincide on B. If each z may be fitted on B by : €K1 CK, then z—x =) be-
longs to Ds(S), and since by hypothesis all of K is required together with Dz(S)
to span D(S), by uniqueness it follows that x1 =%, y1=7, Ki=K. Therefore B
is a rank-set with K as an associated rank-space.

CoROLLARY 3. Two rank-spaces K, L have a common associated rank-set 4 iff
they are both algebraic complements of D4(S). Two rank-sets A, B have a common
associated rank-space K iff D4(S) and Dp(S) are both algebraic complements of K.

THEOREM 4. For a rank-space K and each associated rank-set A, there is a
unique maximal rank-set BD A, which has the same associated rank-spaces as 4
(including K).

Proof. By Theorem 2, D4(S) is an algebraic complement of K. Let B be the
variety which is determined by the subspace D(S). Then Dg(S) = Da(S). For
each s in the complement of B, there is a y&D5p(S) with y(s) #0, so that if
g=x-}y,  cannot fit z at s; therefore B is maximal. By Theorem 2, any comple-
ment L of Dp(S) also is a rank-space, with Basa maximal associated rank-set.

THEOREM 5. Two rank-sets, A and C, associated with the same rank-space K,
are contained in the same maximal rank-set B iff the functions of K fit the functions
of D(S) on A\JC. (The alternative possibility is that the functions s&D(S) are
fitted both on 4 and on C by K, but that there are functions 2 which require a
different function from K for fitting on A than for fitting on C.)
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Proof. 1If AAVCCB, where B is a rank-set associated with K, then the func-
tions of K in particular fit the functons of D(S) on A\UC. Conversely, if K fits
the functions of D(S) on A\JC, then K is a rank-space associated with AVC,
since no smaller linear subspace will fit the functions of D(S) on either 4 or C.
The variety B which is determined by the subspace Dauc(S) is the maximal
rank-set containing A\UC.

THEOREM 6. If A and B are rank-sets, and M is the associated rank-space of
A\UB, then M contains the linear span K+L of K and L, where K, L are suitable
rank-spaces associated respectively with A, B. It is not always necessary that
M=K+L.

Proof. Since M fits the functions of D(S) on 4\UB, in particular it fits them
on 4, and so M contains a K. Similarly M contains an L. Therefore M DK +L.
Abbreviate D4(.S) to Dg, etc. By Theorem 2, M is an algebraic complement of
DaNDz=Daos. In case Daup is a proper subspace of D4 and of Dz, and Kisa
common algebraic complement of D4 and Dg, then L=K, K +L=K, and
K+L is a proper subset of M. In case LND4 complements DaMN\Dp in Dy, or
KNDg complements DaMN\Dp in Dg, then M=K+L.

COROLLARY 7. Each subset C of S is a rank-set. The associated rank-spaces
are the algebraic complements of the subspace Do(S). A subset C for which the maxi-
mal rank-set is all of S has D(S) as associated rank-space. For example, in case
of any linear space of continuous functions on a topological space S, the entire
space S is the maximal rank-set which contains each dense subset. (A subset B
at which all the functions of D(S) vanish of course has {8} as its associated rank-
space, and conversely all functions of D(S) vanish on each rank-set which is
associated with {6}.)

Proof. By Theorem 2, any algebraic complement K of D¢(S5) is a rank-space
with C as an associated rank-subset. If {s€S: y(s) =0 for all y&Dc(S) } =35, then
Do(S) =Dg(S)= {0}, so in this case the algebraic complement is unique; it is
D(S). The only other case in which the associated rank-space is unique is when
De(S)=D(S): for such a rank-set C, the associated rank-space is {0},

THEOREM 8. Any finite-dimensional linear subspace K of D(S) is a rank-space.
If K is of dimension k, there is at least one associated rank set in S which contains
exactly k points.

Proof. If K is of dimension &, then by Theorem 1 of [2], there is at least one
rank-set of & points, which has K as associated rank-space. (Also by Theorem 1
of [2], the various maximal rank-sets associated with K are all varieties deter-
mined by subspaces D4(S), where 4 is some set {s1, -+, se} of k different
points of S.)

For an infinite dimensional D(S), it need not be true that every linear sub-
space L of D(S) is a possible rank-space. If L is not a rank-space, then by Theo-
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rem 2, L is not the algebraic complement of D4(S) for any A CS. Each D4(S)
either contains a nonzero function of L, or is insufficient with L to span D(S),
or both. For example, if D(S) is the space of all bounded continuous functions
on the open unit interval S=(0, 1), and L is the subspace of all bounded func-
tions on (0, 1) which have an extension to be continuous on the closed interval
[0, 1], then although L fits the functions of D(S) on every closed subinterval of
(0, 1), it is not the complement of D4(S) for any A CS. Therefore L is not a
rank-space.
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