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Abstract. The concept of Lagrange and Hermite interpolation polynomials can

be generalized. The spectral basis of idempotents and nilpotents of a factor ring

of polynomials provides a powerful framework for the expression of Lagrange

and Hermite interpolation in 1, 2 and higher dimensional spaces. We give a new

definition of quantum Lagrange and Hermite interpolation polynomials which

works on a countably infinite set of points. Examples are given.

1. Spectral basis of polynomials

Let R[x]h := R[x]/h(x) be the factor ring of polynomials generated by the principal

ideal of the polynomial h(x) =
∏r

i=1(x−xi)
mi , where the xi ∈ R are the distinct real

zeros of h(x) with the respective algebraic multiplicities mi, [3]. As a linear space,

the standard basis of R[x]h can written as a column

X(x) =
(

1 x x2 · · · xm−1
)T

, (1)

of powers of x, where m :=
∑r

i=1 mi. Any polynomial g(x) ∈ R[x]h has the form

g(x) =

m−1
∑

i=0

aix
i = AXX(x)

where AX is the row

AX :=
(

a0 a1 a2 · · · am−1

)

X

of real components of g(x) with respect to the standard basis X .

The spectral basis of R[x]h, the column of m polynomials

S(x) :=
(

p1 q1 · · · qm1−1
1 . . . pr qr · · · qmr−1

r

)T
, (2)

can be defined by

S(x) := W−1X(x) , (3)
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where W is the generalized Vandermonde matrix of the polynomial h(x) [6]. Any

element g(x) ∈ R[x]h, is easily expressed in the spectral basis S(x),

g(x) = AXX(x) = AXWW−1X(x) = ASS(x)

where AS := AXW is the row of components of g(x) in the spectral basis.

The elements of the spectral basis of the factor ring R[x]h enjoy the following

simple rules of multiplication in R[x]h:

•
∑r

i=1 pi = 1, pipj = δijpi, piqi = qi

(4)

• qmi−1
i 6= 0, qmi

i = 0,

for all i, j = 1, . . . , r. These algebraic properties of the spectral basis are most easily

derived with the help of the euclidean algorithym, [5].

For example, let h(x) = (x − x1)(x − x2)
3, and X = {1, x, x2, x3}T . Then

W =
(

X(x1) X(x2) X(1)(x2) X(2)(x2)
)

=









1 1 0 0

x1 x2 1 0

x2
1 x2

2 2x2 1

x3
1 x3

2 3x2
2 3x2









,

where X(k)(xi) := 1
k!

∂k

∂xk X(x)|x=xi
represents the kth-normalized derivative of the

column vector X(x) evaluated at x = xi. The spectral basis for R[x]h is given by

S(x) = W−1X(x) .

For x1 = 2 and x2 = 3, we find

S(x) =









p1

p2

q2

q2
2









=









27 − 27x + 9x2 − x3

−26 + 27x − 9x2 + x3

24 − 26x + 9x2 − x3

−18 + 21x − 8x2 + x3









. (5)

We also have X(x) = WS(x), or

X(x) =









1

x

x2

x3









=









p1 + p2

2p1 + 3p2 + q2

22p1 + 32p2 + 6q2 + q2
2

23p1 + 33p2 + 27q2 + 9q2
2









.

The relationship

x = 2p1 + 3p2 + q2 (6)

is called the spectral decomposition of x in R[x](x−2)(x−3)3 . Note the spectral decom-

positions for x2 and x3 follow by squaring and cubing both sides of the expression (6)

for the spectral decomposition of x, using the rules of multiplication given above.
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2. Hermite Interpolation

Since

W−1 = {S(0), S(1)(0), . . . , S(m−1)(0)} ,

as follows by successively differentiating (3), and

I = {S(x1), . . . , S
(m1−1)(x1); . . . ; S(xr), . . . , S

(mr−1)(xr)}

is the identity m×m matrix, it follows that the spectral basis S(x) of the factor ring

R[x]h is a basis of orthogonal Hermite polynomials [1], [6]. If in (3), all the nilpo-

tents q1, . . . , qr vanish, then the Hermite polynomials reduce to a basis of Lagrange

polynomials, [4].

To find the Hermite interpolation polynomial g(x) ∈ R[x](x−2)(x−3)3 of f(x) =
4

4+(2x−5)2 we use (6), getting

g(x) := f(2p1 + (3 + q2)p2) = f(2)p1 + f(3 + q2)p2

= f(2)p1 + [f(3) + f (1)(3)q2 + f (2)(3)q2
2 ]p2

= f(2)p1 + [f(3) + f (1)(3)(x − 3) + f (2)(x − 3)2]p2 .

The Hermite interpolation polynomial g(x) of f(x) is a Taylor series-like expansion

of f(x) around the points x = 2 and x = 3.

Figure 1: Hermite interpolation g(x) ∈ R[x]h for the function f(x).

3. Hermite Interpolation in Higher Dimension

Let {x1, x2, . . . , xr} be interpolation points (knots) along the x-axis with respective

multiplicities {m1, . . . , mr} and let {y1, y2, . . . , ys} be interpolation points along the

y-axis with respective multiplicities {n1, . . . , ns}. Let

hx =
r

∏

i=1

(x − xi)
mi and hy =

s
∏

j=1

(y − yj)
nj
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be the corresponding polynomials which define the factor rings R[x]hx
and R[y]hy

,

respectively. The 2-dimensional Hermite interpolation polynomials are defined by

taking all the products

{pxipyj
, pxiqyj

k, qxi
kpyj

, qxi
kqyj

l}

where i = 1, . . . , r and j = 1, . . . , s of the elements of spectral bases of R[x]hx
and

R[y]hy
, [2].

Let f(x, y) be any polynomial defined at the knots (xi, yj) to the required orders,

mi − 1 and nj − 1 of partial derivatives. The 2-dimensional Hermite interpolation

polynomial g(x, y) is defined by

g(x, y) = f(

r
∑

i=1

(xi + qxi)pi,

s
∑

j=1

(yj + qyj
)pyj

)

=
r

∑

i=1

s
∑

j=1

f(xi + qxi
, yj + qyj

)pxi
pyj

=

r
∑

i=1

s
∑

j=1

(

mi−1
∑

k=0

nj−1
∑

l=0

∂(k)

∂xk
i

∂(l)

∂yl
i

f(x, y)|(xi,yj)q
k
xi

ql
yj

)

pxi
pyj

,

where ∂(k)

∂xk
i

:= 1
k!

∂k

∂xk
i

and ∂(l)

∂yl
i

:= 1
l!

∂l

∂yl
i

are the normalized partial derivatives w.r.t xi

and yj , respectively.

Figure 2: Graph of the function f(x) = sin(2x2 + 2y2).

4. Quantum Hermite interpolation at an infinite number of points

The simplest example of quantum Hermite interpolation is Langrange Interpolation

at an infinite number of points. Let h(x) = sin(x), which has simple zeros at the



QUANTUM HERMITE INTERPOLATION POLYNOMIALS 109

Figure 3: 2-D Hermite interpolation g(x) for the function f(x) for hx = x(x−1)2 and
hy = y(y − 1)2.

points xk = kπ for k = 0,±1,±2, . . .. Indeed, it is well-known that the function sinx

can be expressed in the product form

sin x = x
∞
∏

k=1

(1 −
x2

k2π2
)

The quantum Lagrange interpolation polynomials are defined by

pk(x) := (−1)k sin(x)

x − kπ
(7)

for k = 0,±1,±2, . . .. Let f(x) be defined at the knots xk. The quantum Langrange

interpolation polynomial g(x) for the function f(x) is given by

g(x) :=

∞
∑

i=−∞

f(xi)pi

We use the term “quantum” to reflect the quantum-like property that while the

quantum interpolation function is defined at only a countable number of points, it is

defined non-locally.

More generally, let K = {xmσ
σ |σ ∈ Index} be a complete, possibly countably

infinite set of the real zeros xσ, with respective (possibly infinite) algebraic multiplicity

mσ, of the real function h(x). The quantum Hermite interpolation polynomials for

h(x) are defined to be the countably infinite set of polynomials

Qh = {pσ, . . . , qmσ−1
σ |σ ∈ Index} (8)

where pσ and qσ := (x − xσ)pσ have the same multiplication rules as given for the

finite Hermite interpolation polynomials (4).
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Figure 4: Both the function f(x) and it’s Hermite interpolant g(x).

To see these rules in action, and some of the strange quantum-like behavior of

these polynomials, let us consider the example h(x) = sin2(1/x). A complete set of

the real zeros of algebraic multiplicity 2 of the function h(x) is, evidently, K = {xk =
1

kπ
| k = ±1,±2, . . .}. To derive the quantum interpolation polynomials for h(x), we

write
∑

k∈K

pk = 1 . (9)

Defining hk = h(x)/(x− 1
kπ

)2, and multiplying (9) by hk, we get hk(x)pk(x) = hk(x).

Multiplying each side of this last equation by h−1
k mod(x − 1

kπ
)2, we find that

pk(x) =
hk(x)

k4π4

[

1 + 2kπ(x −
1

kπ
)
]

.

Just as in the case of finite Hermite interpolation polynomials, the spectral decom-

position of x is given by

x =
∑

k∈K

xpk =
∑

k∈K

(x − xk + xk)pk =
∑

k∈K

xkpk + qk

where

qk := (x − xk)pk = (x − xk)
hk(x)

k4π4

[

1 + 2kπ(x −
1

kπ
)
]

= (x − xk)
hk(x)

k4π4
.
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If f(x) is any function defined at the knots {xk | k ∈ K}, then the quantum hermite

interpolation function g(x) is defined by

g(x) =
∑

k∈Zk

f(xk)pk + f ′(xk)qk .

The figure below shows the graph of both the function f(x) = 1/x and the quan-

tum Hermite interpolation polynomial g(x) for f(x) where h(x) = sin2(1/x).

Figure 5: Hermite interpolation g(x) for the function f(x).
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