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Null Vector Number Systems

Garret Sobczyk
Seminar on Fundamental Problems in Physics

January 17, 2025

Abstract

Let UF := gen{A∪B∪. . .}F be the universal algebra generated by tak-
ing the addition and multiplication of null vectors in the union of sets of
anti-commuting null vectors: U1

F := ∪{A,B, . . .}F . Since the null vectors
in each of these sets are anti-commuting, the products can be taken to be
the anti-symmetric Grassmann wedge product. It follows that each such set
generates a corresponding Grassmann algebra G(A),G(B), . . . over same
field F . These null vectors, and their doubles, are used to define basic
double number fields of real numbers, complex numbers, and quaternions,
used in the construction of all real and complex Clifford geometric alge-
bras of pseudo-riemannian vector spaces. The null vector classification
of the most important lower dimensional geometric algebras, and their
isomorphic coordinated matrix algebras, are discussed in detail indepen-
dent of the concept of a metric. The structure of all higher dimensional
geometric algebras can then be extrapolated.

1 Null Vector Lines and Rays

A real null vector represents an oriented direction of a ray of light. Since it
travels at the speed of light in the 3-D Euclidean rest-frame of every observer, a
null-vector is best visualized by an oriented line having direction but undefined
length. Welcome to the strange world of Minkowski spacetime in which the
concept of an oriented direction is independent from the concept of a definite
metric.

Let c ∈ U1
F ⊂ UF be a null vector in the generating set U1

F of all such null
vectors, with the defining property that c2 = 0. The universal algebra UF , over
a field F , is generated by taking the addition and multiplication of null vectors
in U1

F , according to the familiar rules of addition and multiplication of matrices
over a field F . It follows that

UF := gen{U1
F} = gen{A ∪ B ∪ C ∪ . . .}F

where U1
F := {A ∪ B ∪ C ∪ . . .}F is the union of all such sets of anti-commuting

null vectors. Since the null vectors in each these sets are anti-commuting, multi-
plication of null vectors reduces to the wedge products in the Grassmann algebras
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G(A),G(B), . . ., respectively. Sets of the type Ck := ∪{{c1}, . . . , {ck}} consisting
of singleton null vectors, generate k distinct 21-dimensional Grassmann algebras
over F .

Nullvector Number Line

Figure 1: The concept of an oriented ray is independent of the concept of a
definite metric. A scale which respects the natural ordering of the real numbers
is shown. Also shown is the double ray 2c. The second ray (blue) has an
oriented direction but an undetermined scale.

Since c is a null vector, or ray, by introducing a scale it becomes an oriented
real null vector line Rc. First, pick out a zero point 0 called the origin. Then
choose points along the line naming the positive integers 1, 2, 3, 4, ..., moving
in the positive direction along the ray, and the negative integers −1,−2,−3, ...
naming the points in the negative direction. The points need not be evenly
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spaced because for any real number r ∈ R, (rc)2 = r2c2 = 0. Once a scale has
been chosen, the construction of Rc is complete. Taken together over the real
numbers, gives the singleton Grassmann algebra

GR(c) := R⊕ Rc ⊂ UF . (1)

The Grassmann algebra GR(c) is equivalent to the geometric algebra G0,0,1(R),
and for real numbers r, s, t ∈ R, rc = cr,

rc+ sc = (r + s)c, r(sc) = (rs)c, t(rc+ sc) = (tr)c+ (ts)c. (2)

1.1 Double null vectors and rays

The concept of a double null vector, or double ray, over the real number field R
is important.

2cR := {(rc, sc)| r, s ∈ R}. (3)

A real double ray 2c ≡ (r, s)c shares the same direction and origin 0, but can
have a different orientation and scale. Double rays are added and multiplied
component-wise. For 2c1 = (r1, s1)c and 2c2 = (r2, s2)c

2c1 +
2c2 = (r1 + r2, s1 + s2)c,

2c1
2c2 = (r1r2, s1s2)c. (4)

Figure 1 pictures the real double ray 2c as a pair of parallel lines through the
origin 0. They are drawn as separate lines close together, although they are the
same line distinguished only by possibly different scales.

A similar construction can be given for the complex null vector line Cj(c), its
corresponding complex Grassmann algebra, and its complex geometric algebra,

GCj (c) := Cj ⊕ Cj(c) ≡ G0,0,1(Cj) ⊂ UCj . (5)

In this case scalers are the complex numbers

Cj := {x+ jy| x, y ∈ R, j :=
√
−1}.

The complex scalers Cj of a complex ray c := c(Cj) represent two intrinsic
degrees of freedom. Just like a real double null vector 2cR in (4),

2cC := {(zc, wc)| z, w ∈ Cj}, (6)

and are added and multiplied component-wise. The the complex double ray
2c = (z, w)c share the same direction and origin 0, but can have a different
scales just as in the case of a real double ray pictured in Figure 1.

1.2 Simple geometric algebras of rays

Let G0,0,1(c1) := span{1, c1}R, G0,0,1(c2) := span{1, c2}R and G0,0,1(c3) :=
span{1, c3}R be three geometric algebras of the rays c1, c2, c3 ∈ UR, as de-
fined in (1). Suppose that the corresponding singleton Grassmann algebras are
correlated by the rule

ci · cj :=
1

2
(cicj + cjci) =

1

2
(1− δij). (7)
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Easy consequences follow from the rule (7). Defining e := c1 + c2 and
f = (c1 − c2),

• e2 = (c1c2 + c2c1) = 1, f2 = −1 and ef = −fe.

The orthonormal quantities e and f , constructed from the null vectors c1
and c2, are called Euclidean and pseudo-Euclidean unit vectors, respec-
tively. In addition, the new quantity

• ef = (c1 + c2)(c1 − c2) = c2c1 − c1c2 = 2c2 ∧ c1 is a unit hyperbolic
bivector, since (ef)2 = 4(c2 ∧ c1)

2 = (c2c1 − c1c2)
2 = 1.

• c1c2c1 = c1, c2c1c2 = c2, and (c1c2)
2 = c1c2.

• The geometric algebra

G1,1 := span{1, e, f , ef}R. (8)

• Alternatively, the geometric algebra G1,1 can be defined by

G1,1 := gen{c1, c2}R = span{1, c1, c2, c1 ∧ c2}, (9)

where c1 := 1
2 (e+ f), c2 := 1

2 (e− f) and c1 ∧ c2 := 1
2 (c1c2 − c2c1) = fe.

A Multiplication Table for the correlated null vector building blocks of G1,1 is
given below.

Table 1: Multiplication table.
c1 c2 c1c2 c2c1

c1 0 c1c2 0 c1
c2 c2c1 0 c2 0
c1c2 c1 0 c1c2 0
c2c1 0 c2 0 c2c1

A degenerate geometric subalgebras of G1,1 is

dgtG1,0,1 := span{1, c1, c1 ∧ c2}R ⊂ G1,1 = gen{c1, c2}R.

In this degenerate algebra the hyperbolic bivector c1 ∧ c2, which anticommutes
with c1, is interpreted as a vector. We now construct two degenerate subalgebras
of G1,2,

dgtG0,1,1 := gen{1, c1, c2 − c3, c1(c2 − c3)} ⊂ G1,2 = gen{c1, c2, c3}R.

and
dgtG0,0,2 := span{1, c1, c1(c2 − c3)} ⊂ G1,2.

The geometric algebras G1,1 and G1,2 are further discussed in the next Section.
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1.3 Coordinate matrices of G1,1, G2,0, G1,2 and G2(C)
Multiplication Table 2 is for a pair of correlated null vectors a,b satisfying

a · b =
1

2
⇐⇒ 2a · b = (ab+ ba) = 1. (10)

It can be easily checked that the relations (7) and (10), and the Multiplication

Table 2: Multiplication table.
a b ab ba

a 0 ab 0 a
b ba 0 b 0
ab a 0 ab 0
ba 0 b 0 ba

Tables 1 & 2 are identical when c1 → a and c2 → b.
The geometric algebra G1,1 is isomorphic to the familiar 2 × 2 real matrix

algebra M2(R), which define the coordinate matrices of G1,1 with respect to the
the spectral basis,(

1
a

)
ba ( 1 b ) =

(
ba
a

)
(ba b ) =

(
ba b
a ab

)
. (11)

The matrix [g] =

(
g11 g12
g21 g22

)
∈ M2(R) is said to be the coordinate matrix of

the geometric number g ∈ G1,1,

g = (ba a ) [g]

(
ba
b

)
= g11ba+ g12b+ g21a+ g22ab, (12)

with respect to the spectral basis (11), [5, Chp.3,pp.45-64]. Note that

[a] =

(
0 0
1 0

)
, [b] =

(
0 1
0 0

)
, [ba] =

(
1 0
0 0

)
, [ab] =

(
0 0
0 1

)
. (13)

The standard basis of G1,1 is generated by two vectors e := a+b, f := a−b,
which satisfy the rules

e2 = 1 = −f2, ef = −fe = 2b ∧ a, (ef)2 = 4(b ∧ a)2 = 1, (14)

as already noted in (8) in the previous section. See Figure 2 on page 11. Thus,

G1,1 = gen{e, f}R = span{1, e, f , ef}R. (15)

The elements {e, f , ef} are mutually anticommutive. By reordering and rein-
terpreting the standard basis elements in (15), we get the standard basis of
geometric algebra

G2 := span{1, e1, e2, e12}=̃span{1, e, ef , f}R, (16)
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where in this case we are identifying ef to be a vector, and f to be a bivector.
Whereas the geometric algebras G1,1=̃G2 are isomorphic, we have gained a new
interpretation in terms of null vectors.

Taking the geometric algebra, G1,1(Cj)=̃G2(Cj) over the complex numbers
with j =

√
−1, the calculation

(a+ jb)2 = a2 + 2ja · b+ j2b2 = j,

shows that the inner product of a with the imaginary null vector jb is j, since
a2 = b2 = 0. On the other hand,

(a+ jb)(a− jb) = jba− jab = 2j(b ∧ a), (17)

produces the imaginary bivector 2j(b∧a). Whereas the real bivector ef in (14)
has square +1, the imaginary bivector in (17) has square −1.

Let u := ef be the unit hyperbolic bivector, and

u± := ba =
1

2

(
1± (a+ b)(a− b)

)
=

1

2
(1± ef) =

1

2
(1± u),

respectively. The spectral basis (11) can be written in the form(
1
a

)
ba ( 1 b ) =

(
1

a+ b

)
ba ( 1 a− b ) =

(
u+ eu−
eu+ u−

)
.

Letting e1 = e and f1 = f , the familiar Pauli matrices σk := [ek], for k = 1, 2, 3,
are

[e1] =

(
0 1
1 0

)
, [e2] := [jf1] =

(
0 −j
j 0

)
and [e3] =

(
1 0
0 −1

)
, (18)

where f1 = e1e3 = −ie2 and i := e1e2e3 is the unit trivector of G3. The real
geometric algebra G1,1 is a subalgebra of G3,

G1,1 := genR{e1, f1} = genR{e1, e1e3} ⊂ G3, (19)

and
G1,1(Cj) ≡ G2(Cj)=̃G3=̃G+

1,3=̃Mat2(Cj). (20)

Whereas f1 = e1e3 in (19) is interpreted as a vector in G1,1, it is interpreted
as the bivector e1e3 in G3. On the other hand, e3 = −ie1e2 is interpreted as
an imaginary bivector in G1,1(C) = G2(C) and a vector in G3. A complex 2× 2
matrix

[g] =

(
g11 g12
g21 g22

)
∈ M2(C),

with e123 ≡ i = j, is the coordinate matrix of the geometric number g ∈ G3.
The convention i = j follows from sign convention used in the definition of the
Pauli matrices (18). Using (12),

g = (ba a ) [g]

(
ba
b

)
= g11ba+ g12b+ g21a+ g22ab (21)
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Whereas the matrix [g] in (21) is a matrix over the complex numbers Cj , the
equations (21) and (12) are otherwise identical.

Consider now the geometric algebra defined by G1,2 := gen{e1, f1, f2}, where
e1, f1, f2 are anticommutative and satisfy

e21 = 1 = −f21 = −f22 .

The vectors {e1, f1, f2} are called the standard basis of G1,2. Alternatively, G1,2

can be defined by

G1,2 := span{1, e1, f1, f2, } = gen{c1, c2, c3},

where

c1 :=
1

2
(e1 + f1), c2 :=

1

2
(e1 − f1), c3 := e1 + f2.

For an element g ∈ G1,2, and its complex coordinate matrix [g],

g = ( c2c1 c1 ) [g]

(
c2c1
c2

)
= ( 1 e1 )u+[g]

(
1
f1

)
= g11u+ + g12e1u− + g21e1u+ + g22u−. (22)

From (13), the coordinate matrices [c1] = [a] and [c2] = [b] are known. The
coordinate matrices of [f2] and [c3] = [e1] + [f2] are

[f2] = −[f1][e2][e3] =

(
j 0
0 −j

)
= j[e3] and [c3] =

(
j 1
1 −j

)
. (23)

It can be checked that i = e1e2e3 = e1f1f2 = j.

2 The Geometric Algebras Gp,q

The geometric algebras Gn,n and G1,n are sub-algebras of UF , defined in terms
of the basic null vector building blocks in U1

F . Here, only the scalar fields R and
C of real and complex numbers are considered. After the leisurely introduction
already given, formal definitions and terminology are introduced and developed.
Citations to proofs and more advanced material are provided.

2.1 The geometric algebras Gn,n and G1,n

Definition 1 Two null vectors ci, cj ∈ U1
F are said to be correlated if

ci · cj :=
1

2
(cicj + cjci) ̸= 0.

Definition 2 Two sets An,Bn ⊂ U1
F of anticommuting null-vectors An :=

{a1, . . . ,an}, and Bn := {b1, . . . ,bn}, generating the Grassmann algebras G2n(An)
and G2n(Bn), are said to be globally dual if

ai · bj =
1

2
(aibj + bjai) =

1

2
δij ,

for each 1 ≤ i ≤ j ≤ n.
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The concept of global duality in Gn,n encompasses the concept of duality be-
tween a vector n-space and its dual n-space of covectors. It the has the signif-
icant advantage of being embedded in a comprehensive algebraic structure [2,
p.3].

Definition 3 A set Cn+1 := {c1, . . . , cn+1} ⊂ U1
F of (n + 1)-correlated null-

vectors, with ci · cj := 1
2 (1− δij), is said to be locally dual.

The concept of local duality was first defined and studied in [6, 7].
For globally dual Grassmann algebras G2n(An), G2n(Bn), we have

Theorem 1 The 22n-dimensional geometric algebra

Gn,n := gen{An ∪ Bn}F = gen{e1, . . . , en, f1, . . . , fn} ⊂ UF ,

where ei := ai + bi, fi := ai − bi, for i = 1, . . . , n.

The geometric algebras Gn,n=̃Mat2n(R), [5, 6, pp.81-88].

The construction of a Grassmann algebra G2n+1(Cn+1), under the antisym-
metric wedge product, together with the extra structure of local duality,

ci · cj :=
1

2
(cicj + cjci) =

1

2
(1− δij),

defines the geometric algebra G1,n. Local duality makes possible a new rep-
resentation theory of geometric algebras not based wholly on the concept of a
quadratic form [6, 7]. For k ≥ 1, let Ck := c1+ · · ·+ck and ∧Ck := c1∧· · ·∧ck.

Theorem 2 The geometric algebra

G1,n = gen{Cn+1}R = gen{e1, f1, . . . , fn} ⊂ UR,

where e1 := c1 + c2 and f1 := c1 − c2. For 2 ≤ k ≤ n, and αk :=
√
2√

k(k−1)
,

fk := αk

(
(k − 1)ck+1 −Ck

)
. For n ≥ 1, e1f1···n = − (

√
2)n+1

√
n

∧ Cn+1.

The following Theorem 3 provides a link between Gp+1,q+1 and its matrix
representation Mat2(Gp,q) in terms of a 2 × 2 matrix algebra over Gp,q, [5,
p.71]. Iterating this Theorem in the cases p − q ≥ 0, p − q = 0, or p − q < 0,
provides a new approach to the classification of all real and complex geometric
algebras in terms of their metric free null vectors and isomorphic coordinate
matrix algebras.

Theorem 3 Gp+1,q+1=̃Mat2(Gp,q).

Proof:
Recall that

Gp,q = R(e1, . . . , ep, f1, . . . , fq) and Gp+1,q+1 = R(e1, . . . , ep, e, f1, . . . , fq, f).

8



Any element G ∈ Gp+1,q+1 can be expressed in the form

G = g0 + g1e+ g2f + g3ef , (24)

where gµ ∈ Gp,q for 0 ≤ µ ≤ 3. Applying the spectral basis (15) to Gp+1,q+1,
and again noting that

( 1 e )u+

(
1
e

)
= u+ + eu+e = u+ + u− = 1,

we calculate

G = ( 1 e )u+

(
1
e

)
G ( 1 e )u+

(
1
e

)

= ( 1 e )u+

(
G Ge
eG eGe

)
u+

(
1
e

)

= ( 1 e )u+

(
g0 + g3 g1 − g2
g−1 + g−2 g−0 − g−3

)(
1
e

)
= ( 1 e )u+[G]

(
1
e

)
,

where

[G] :=

(
g0 + g3 g1 − g2
g−1 + g−2 g−0 − g−3

)
∈ M2(Gp,q),

and g− := ege is the operation of geometric inversion in Gp,q obtained by
replacing all vectors in g by their negatives.

□

Corollary 1 For p = 0 and q = n, G1,n+1=̃Mat2(G0,n). Similarly, for p = n
and q = 0, Gn+1,1=̃Mat2(Gn,0).

Corollary 2 For p = n and q = n, Gn,n=̃Mat2n(R).

Corollary 3 For n = 1, 2, 3, 4, 5,

G1,n=̃Mat2(R), Mat2(C), Mat2(H), Mat2(
2H),

respectively. For n = 6, 7, G1,6=̃Mat8(C), and G1,7=̃Mat16(R).

Theorem 3, and its threeCorollaries, offer an alternative approach to proving
Theorems 1 and 2.

2.2 Double number fields

One of the main objective of this work is to demonstrate how the universal
algebra UF of null vectors offers unexpected new insight into the structure of real
and complex geometric algebras. In order to classify these geometric algebras
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in terms of more familiar isomorphic matrix algebras, double number fields are
used. Let F be any number field. The double number field of F is

2F := {(r, s)| r, s ∈ F}. (25)

For (r1, s1), (r2, s2) ∈ 2F , double addition and double multiplication are defined
by

(r1, s1) + (r2, s2) = (r1 + r2, s1 + s2), and (r1, s1)(r2, s2) = (r1r2, s1s2).

Double number fields for R, C and H are 2R := (R,R), 2C := (C,C), 2H =
(H,H) are used in the isomorphic coordinate matrix representation of the geo-
metric algebras Gp,q. Complex scalars Cj := R(j) are defined by extending the
real number system R to include an imaginary unit j :=

√
−1. The hyperbolic

numbers 2R := R(I) is obtained by extending the real numbers R to include a
hyperbolic unit I with the property that I /∈ R and I2 = 1, [5, 10].

Let us reexamine these ideas in the context of the null vector real number
line Rc, pictured in Figure 1, which is the oriented direction of a ray of light on
the 3-dimensional lightcone in 4-dimensional Minkowski spacetime R1,3. How
each such ray is seen in the relative three dimensional Euclidean rest frame of
each observer is explained in Section 4. Each null vector c ∈ UF is an oriented
direction with no assigned scale. The concept of a scalar is independent of the
concept of scale, and the concept of length is independent of the concept of
direction. Multiplication Table 1 implies that the concepts of global and local
duality coincide in the geometric algebra G1,1 := gen{c1, c2} generated by two
locally dual null vectors.

Historically, j =
√
−1 is identified with the imaginary unit on the vertical line

in the coordinate number plane R2. The relation e2 = 1 suggests we identify the
classical horizontal real number line R with vector number line Re, constructed
from e. Similarly, the classical vertical imaginary number line is replaced by
Rf , the pseudo-vector number line. Taken together, the correlated null vectors
c1, c2, or alternatively, the horizontal and vertical vector lines Re and Rf define
the geometric algebra

G1,1=̃Mat2(R), (26)

see Figure 2. We have the following relations,

G1,0 =̃
2R, G1,0(Cj) =̃

2C, and G0,2 =̃H, (27)

[5, p. 75].
Analogous to the classical complex number plane,

Cj := {x+ jy| x, y ∈ R},

we define the complex null vector plane of the correlated null vectors c1 and c2
to be

Cj(c1, c2) := {xc1 + jyc2| x, y ∈ R}=̃G2(Cj) =̃G1,2=̃G3,0 =̃Mat2(Cj). (28)
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Figure 2: The null vector number plane R(a,b) defined by the null vectors
a = c1 and b = c2 in the geometric algebra G1,1.

For Z = xc1 + jyc2, Z
2 = j = −Z

2
, and

ZZ = (xc1 + jyc2)(xc1 − yjc2) = 2xyj(c2 ∧ c1) = −ZZ.

Contrast (28) with
G1,2(Cj)=̃G3(Cj)=̃Mat2(

2Cj), (29)

[5, p. 75]. The double double quaternions G0,3 ≡ 2H are also necessary in
the classification scheme of geometric algebras as isomorphic coordinate matrix
algebras.

3 Classification of Geometric Algebras

With theThree Theorems in hand, the matrix representation of any geometric
algebra Gp,q is reduced to the study of the representations of lower dimensional
geometric algebras satisfying p+ q < 8, known as the Cartan-Bott 8-periodicity
relation. It follows that any real or complex geometric algebra can be rep-
resented by coordinate matrices over R,C,H, 2R, 2C, 2H. From Theorem 1
and Theorem 2, in the cases of R,C,H the geometric algebras are expressed
uniquely in terms of their globally or locally defined dual null vectors. Theo-
rem 3 is used to show the same result is true for geometric algebras over the
complex numbers.
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3.1 Geometric algebras G2,1,G3(C),G1,3,G3,1 and G4(C)
When G1,2 is complexified with j :=

√
−1, the result is

G1,2(C) ≡ G3(C)=̃Mat2(
2C).

Note that the locally dual null basis {c1, c2, c3} can still be used, and the matrix
representation employs a pair of two complex 2 × 2 matrices. In this case the
imaginary unit cannot be identified with a real pseudoscalar element, as in (20).

The standard basis of the geometric algebra G1,3 is

G1,3 := gen{e1, f1, f2, f3}R=̃G0,4=̃G4,0=̃Mat2(H)=̃

span{1, f1, e1f2, e1f12}R + J span{1, f1, e1f2, e1f12}R (30)

for J = f123, J± = (1± J). To see that G0,2=̃H, note that J2 = 1 and

H = G0,2=̃gen{f1, f2}R = span{1, f1, f2, f12}=̃span{1, f1, e1f2, e1f12}R.

For the complex geometric algebra G1,3(C) ≡ G4(C), we have

G4(C)=̃G4,1(R)=̃G2,3(R)=̃G5(R)=̃Mat4(C). (31)

Note that each of these real geometric algebras can be obtained by a reinterpre-
tation of the elements in G5(R), or any of the other isomorphic real algebras.

3.2 Geometric algebras G5(C),G6(C) and G7(C)
For G5(C), we have for p+ q = 5,

G5(C) ≡ Gp,q(C)=̃Mat4(
2C). (32)

For these cases C are the complex scalars with j =
√
−1.

For p+ q = 6, G6(C) ≡ Gp+q(C), and

G6(C)=̃G7(R)=̃G5,2(R)=̃G3,4(R)=̃G1,6(R)=̃Mat8(C). (33)

For G7(C), we have for p+ q = 7

G7(C) ≡ Gp,q(C)=̃Mat8(
2C). (34)

For these cases C are the complex scalars with j =
√
−1.

12



Local and Global Duality

Universal Algebra of Null Vectors:                     UC                                       

Grassmann algebras
of null vectors:          G(A)               Real             G(B)          Real          G(C)              

                                                Global duality                                   Local duality                               

Geometric algebras:                        Gn,n
                                                                      Gn,1                               G1,n  

                                                    { A,B}                                         C+- = {c1, … , cn }+-

                                                                                               

                                                                                  A* = B               R  ea  l                 {c*
i = -cj }-          {c*

i = cj }+

                                                                                  A** = B* = A                                               {c**
i = -cj

*= ci }-   {c**
i = cj

* = ci }+                                   

                                                                           Complex

                                             G2n(C)  = M2
n(C)                                           Gn+1(C)

                                                                                                      n = odd            n = even

                                                                                        Gn+1(C)  = M   (C)    Gn+1(C)  = M  ( 2C)  
                                                                                                             2n+1                                                 2n 

 

Figure 3: Global duality is equivalent to the classical concept of duality between
a vector space and its dual covector space. The concept of local duality is
constructed in Minkowski spacetime in the Lorentz geometric algebras Gn,1

and G1,n. The double complex geometric algebras 2C only arrise in the case of
local duality.

4 Light Rays in Special Relativity

Minkowski light rays on the null cone in G1,3 are represented by oriented rays.
But how do oriented rays appear to an observer in a given rest-frame? Ev-
ery observer is defined by a positively oriented timelike Minkowski vector γ0.
WLOG, we now calculate the Hestenes splitting of a Minkowski null vector ray
in the rest frame of γ0 = c1 + c2, [1, 3, 8, 11, 12, 13].
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Suppose that a null ray is given by

r =

4∑
i=1

xici where r2 =
∑

1≤i<j≤4

xixj

= x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 = 0. (35)

Using Theorem 2, in terms of the standard basis {e1, f1, f2, f3} of G1,3,

r =
1

2
(x1 + x2 + 2x3 + 2x4)e1 +

1

2
(x1 − x2)f1 +

1

2
(2x3 + x4)f2 +

√
3

2
x4f3.

The Hestenes splitting, with respect to a unit timelike Minkowski vector e1 =
C2, is given by rC2 = r ·C2 + r ∧C2, where

r ·C2 =
1

2
(x1 + x2) + (x3 + x4)

and

r ∧C2 = (x1 − x2)c1 ∧ c2 + x3c3 ∧ (c1 + c2) + x4c4 ∧ (c1 + c2)

=
1

2
(x1 − x2)E1 +

1

2
(2x3 + x4)E2 +

√
3

2
x4E3,

where E1 := f1e1, E2 = f2e1, E3 = f3e1 are three orthonormal relative Eu-
clidean vectors of the observer e1.

Calculating

(r ∧C2)
2 =

1

4
(x1 − x2)

2 +
1

4
(2x3 + x4)

2 +
3

2
x2
4,

and

(r · e1)2 =
1

4
(x1 + x2 + 2x3 + 2x4)

2.

In the relative reference frame of each observer, the Minkowski metric on the
lightcone takes the relative expression

(r ·C2 + r ∧C2)(r ·C2 − r ∧C2) = rC2C2 r = r2 = 0.

Checking, we find that

(r ·C2)
2 − (r ∧C2)

2 = r2 = 0,

as required by (35) for the oriented Minkowski ray r.
Points x, y ∈ G1

1,3 are called events in spacetime. Given the timelike unit
vector γ0 = c1 + c2 of a Euclidean rest-frame,

xγ0 = x · γ0 + x ∧ γ0 = ct+ x,

where ct := x ·γ0 is the relative time and x := x∧x is the relative position of the
event x as measured in the rest-frame of the observer. The relative Euclidean
distance between the events x and y at the same relative time ct is

|y − x| :=
√

(y − x)2 =
√

|y|2 + 2y · x+ |x|2.
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