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Abstract

In the author’s Null Vector Number Systems a ray or null vector in
Lorentz-Minkowski spacetime is an oriented direction, unencumbered by a
metric defined length. Researchers are exploring neural networks utilizing
Clifford’s geometric algebras of multivectors in the hope that the black box
nature of such networks can be better understood by capturing underlying
geometric features in the data. Usually the weights of neurons in each layer
of a linear network are determined by the inner product of that neuron
with each of the other neurons in that layer. However, by employing
geometric algebra, we also have the outer product at our disposal. In
addition to further developing the algebraic structure of a locally dual set
of null vectors, we explore how geometric networks of affine neurons might
be constructed.

0 Introduction

A real null vector represents an oriented direction of a ray of light. The concept
of a null vector v is independent from the concept of a definite metric since v2 =
0. The (Clifford) geometric algebras G1,n and Gn,1 can be defined by locally dual
sets of n+ 1 null vectors [21]. In [1], the authors demonstrate how geometrical
ideas must be deeply intertwined with neural networks, however alchemistically
their workings appear to be, see Figure 4. They further remark that while deep
neural networks are locally simple they are globally complicated. Geometric
algebras are brought into the picture in Mert Pilancei’s paper [9]. In his ground
breaking Stanford University YouTube Seminar [11], he examines the details
of how the inner and outer products of vectors in geometric algebras can be
utilized. In 2023, another critical milestone was achieved with the development
of the neuro-network transformer [22]. Use of the transformer makes possible
the parallelization of calculations, which had presented a serious limitation of
what could be accomplished.

1



Many other papers offer new insights and methods into further developing
the surprising successes of neural networks in artificial intelligence, robotics,
computer vision, automatic language translation, and other areas. The mathe-
matics of null vector number systems, developed in the geometric algebras G1,n

and Gn,1, can be found in [17, 19, 18, 20]. The concept of a null vector neu-
ron, set down in this work, might further simplify calculations and give new
geometric insight into neural networks. T. Havel’s Heron’s Formula in Higher
Dimensions provides new insight into how early Greek discoveries of proper-
ties of a triangle in the plane reflect much deeper corresponding relationships
of simplices in higher dimensional spaces [4, 5]. E. Hitzer’s, On Symmetries
of Geometric Algebra discusses basic symmetry relationships in the geometric
algebras G1,n and Gn,1, the geometric algebras of interest in this work. The
paper [3] by C. Eur and M. Larson, Combinatorial Hodge Theory, discusses
K ahler Packages, Polytopes, and Matroids, offer new ways of thinking about
the structure of a neural network.

Section 1, gives a review of the universal algebra of null vectors constructed
from Grassmann algebras of null vectors. A null vector characterizes the concept
of an oriented direction unencumbered by a metrically defined length. Various
basic identities in geometric algebra are reviewed.

Section 2, sets down the notation used, and studies properties of a locally
dual null vector basis of Lorentz-Minkowski geometric algebras G1,n. Graphs of
some of the basic functions are provided. A subsection is devoted to a concise
treatment of the symmetric group acting on Sn+1 defined by a product of n+1
null vectors.

Section 3, defines local duality in terms of inner products Cr ·Cs between r-
and s- dimensional blades of null vectors, used to construct dual reciprocal bases.
A subsection constructs an isomorphism between the geometric algebra Gn+1 of
the Euclidean vector space Rn+1 and the Lorentz-Minkowski spacetime algebra
G1,n of the pseudo-Euclidean vector space R1,n. The orthogonalization process
has tremendous computational advantages, reducing calculations involving high
dimension determinants to calculations involving simple addition formulas in a
locally dual basis and its reciprocal.

Sections 4 and 5, suggest how a Lorentz-Minkowski Neural Network (LMNN)
might be constructed using the new hierarchy of Lorentz-Minkowski geometric
algebras and their unique properties. The isomorphism between the geometric
algebras Gn+1,0 and G1,n offer new possibilities and insight into the nature of
this inscrutable, even mysterious, new technology.

1 Universal algebra of null vectors

The universal algebra of null vectors UF over a field F is generated by a maximal
set of null vectors U1

F ,

UF := gen(U1
F ) = gen{a,b, c, . . . | 0 = a2 = b2 = c2 = ...}F . (1)
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Null vectors are added and multiplied according to the familiar rules of matrix
algebra over a field F , here chosen to be the real or complex numbers R or C. A
passing familiarity with the notation and ideas set down in [21] is recommended
to the reader.

Figure 1: The concept of an oriented ray is independent of the concept of a
definite metric. A scale which respects the natural ordering of the real numbers
is shown. A scale defines the orientation and origin of the ray.

A null vector a ∈ U1
R with a2 = 0 abstracts the direction of an oriented ray

of light on the Einstein light cone, independent of the concept of its length. All
rays on the light cone pass through a common point, the origin 0, and are seen
by observers as straight lines in their rest frames, determined by their relative
velocities. A scaled null vector v on the light cone is pictured in Figure 1. The
vertex of the light cone is the origin of the coordinate system of spacetime.
Rays on the light cone are said to be regularly scaled if all the rays are scaled as
Euclidean real number lines passing through the origin, differing only in their
directions.
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Given two null vectors a,b ∈ U1
1 , their geometric product

ab := a · b+ a ∧ b, (2)

where a · b = 1
2 (ab + ba) is the scaler valued inner product, and a ∧ b :=

1
2 (ab − ba) is the bivector valued outer product of a and b, respectively. For
s, t ∈ R,

(sa+ tb)2 = s2a2 + 2sta · b+ t2b2 = 2sta · b. (3)

Since a and b are null vectors, only the symmetric inner product survives. If
a · b = 0, they are orthogonal. In this case, only the antisymmetric bivector
valued outer product of ab survives,

ab = a ∧ b = −b ∧ a = −ba.

Suppose that a2 = b2 = 0, and a ·b = 1
2 . Defining e = a+b and f = a−b,

it is not hard to show that

e2 = 1, f2 = −1, and e · f = 0.

See Figure 2, [15].
A set

Cn+1 := {c1, . . . , cn+1} ⊂ U1
R (4)

of n+ 1 null vectors ci are said to be locally dual if they obey the rule

2 ci · cj := (cicj + cjci) = (1− δij) ⇐⇒ ci · cj =
(

0, i = j
1
2 , i ̸= j)

)
, (5)

for all 1 ≤ i ≤ j ≤ n+ 1. Such a set of null vectors generate the real geometric
algebra

G1,n := gen{c1, . . . , cn+1}R, (6)

[21]. If a ∧ b = 0 then b = λa for some λ ∈ R. If cj is in the positive or future
lightcone, and a2 = 0, cj · a > 0 then a is also on the future light cone. If
cj · a < 0 then a is on past light cone.

The Multiplication Table 1, given below for the locally dual basis of G1,n,
shows that the geometric product is completely determined by the multiplication
of any pair of locally dual basis null vectors ci, cj ∈ G1

1,n. Whereas the inner

product of a distinct pair, ci ·cj = 1
2 , the antisymmetric outer product ci∧cj =

−cj ∧ci ∈ G2
1,n is bivector valued. Just as a null vector determines the oriented

direction of a ray, the bivector ci ∧ cj determines the direction of an oriented
plane. The Gramian of ci ∧ cj is defined by

(ci ∧ cj)
2 = −(cj ∧ ci) · (ci ∧ cj) = −

(
c2i ci · cj

cj · ci c2j

)
= − det

(
0 1

2
1
2 0

)
=

1

4
.

(7)
The hyperbolic magnitude of the bivector ci ∧ cj is

|ci ∧ cj | :=
√
(ci ∧ cj)2 =

1

2
,
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Figure 2: Given the null vectors a,b with inner product 1
2 , the vectors e and f

are orthogonal.

Table 1: Multiplication table.
ci cj cicj cjci

ci 0 cicj 0 ci
cj cjci 0 cj 0
cicj ci 0 cicj 0
cjci 0 cj 0 cjci

the same as the inner product ci · cj .
The Gramian is a powerful tool giving new geometric insight into ancient

Greek mathematics, and its generalization to higher dimensions [4]. In hyper-
bolic geometry the famous Euclidean trigonometric identity

r2 = (x+ iy)(x− iy) = r2(cos2 θ + sin2 θ), (8)
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for i2 = −1, x = r cos θ, y = r sin θ, becomes the corresponding hyperbolic
trigonometric identity

ρ2 = (x+ uy)(x− uy) = ρ2(cosh2 ϕ− sinh2 ϕ), (9)

with u := 2ci ∧ cj so that, u2 = +1, [15].
For k ≥ 1, the k-blade Ck := c1 ∧ · · · ∧ ck. Bivector and higher order blades,

expressed in terms of the locally dual basis Ck+1 = {c1, . . . , cn+1} ∈ G1
1,n,

have many interesting properties. Given multivectors M,N ∈ G1,n, define
M⊗N := 1

2 (MN−NM). Some basic identities are given below:

1. c1(c1 ∧ c2) = c1 · (c1 ∧ c2) = − 1
2c1

2. c1(c2 ∧ c3) = c1 · (c2 ∧ c3) + c1 ∧ c2 ∧ c3 = 1
2 (c3 − c2) + c1 ∧ c2 ∧ c3

3. (c1 ∧ c2)(c1 ∧ c3) = (c12 − 1
2 )(c13 −

1
2 ) =

1
4 + 1

2 (c3 − c1).

4. (c1 ∧ c2)(c3 ∧ c4) = (c1 ∧ c2)⊗ (c3 ∧ c4) + (c1 ∧ c2) ∧ (c3 ∧ c4)

=
1

2
(c1 − c2)(c4 − c3) +C4

5. For 2 ≤ j ≤ k, define Cj,k := (cj+1 ∧ · · · ∧ cj+k). Then

CjCj,k := (c1 ∧ · · · ∧ cj)(cj+1 ∧ · · · ∧ cj+k)

= (c1 ∧ · · · ∧ cj)⊗ (cj+1 ∧ · · · cj+k) +Cj+k.

2 Locally Duality and the Symmetric Group

Let {c1, . . . , cn+1} ⊂ UR be the locally dual basis (4) of the geometric algebra

G1,n. Define c(0) = c0 = 0, c(k) :=
∑k

j=1 cj , and c(j,k) =
∑j+k

i=j+1 ci. Then

c(k) =

k∑
j=1

cj =⇒ c2(k) =
k(k − 1)

2
. (10)

The following formulas are some of the many that can be derived.
Using (10), gives

c(p,q) = c(p+q) − c(p) =

p+q∑
j=p+1

cj =⇒ c2(j,k) = c2(q). (11)

Using the right side of (11), gives

c(p) · c(p+q) =
1

2
(c2(p+q) + c2(p) − c2(q)) =

p(p+ q − 1)

2
(12)
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For p ≥ q, let p → p− q in (12), gives

c(p) · c(p−q) =
(p− q)(p− 1)

2
= c2(p) −

q(p− 1)

2
(13)

(
c(p) ± (c(p+q) − c(p))

)2

=
(p± q)2 − (p+ q)

2
. (14)

For p ≥ q,

c(p) · c(q) = c2(q) +
(p− q)q

2
=

(p− 1)q

2
. (15)

For p ≥ q,

(c(p) ∧ c(q))
2 =

q(p− 1)(p− q)

4

=⇒ |c(p) ∧ c(q)| =
√
q(p− 1)(p− q)

2
. (16)

See Figure 6, for a graph of the difference of equations (16 ) and (15). Using
(15) and (16) gives the result

|c(p) ∧ c(q)|
c(p) · c(q)

=

√
(p− q)

q(p− 1)
. (17)

Using the two parts of (14), gives

(c(p) − (c(p+q) − c(p)))
2

c2(p+q)

=
(p− q)2 − (p+ q)

(p+ q)2 − (p+ q)
, (18)

see Figure 5. Using (12) and (14), gives√
c2(p)c

2
(q)

c2(p+q)

=

√
p(p− 1)q(q − 1)

(p+ q)(p+ q − 1)
, (19)

see Figure 7.
For the vectors c(p), c(q) ∈ G1

1,n, using (2) and (15),

c2(p)c
2
(q) = c(p)c(q)c(q)c(p) =

(
c(p) · c(q) + c(p) ∧ c(q)

)(
c(p) · c(q) − c(p) ∧ c(q)

)
= (c(p) · c(q))2 − (c(p) ∧ c(q))

2, (20)

where in this case

ρ2 = c2(p)c
2
(q) =

1

4
p(p− 1)q(q − 1), coshϕ =

c(p) · c(q)√
c2(p)c

2
(q)

, sinhϕ =
|c(p) ∧ c(q)|√

c2(p)c
2
(q)

.
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2.1 The symmetric group Sn+1

As before, let {c1, · · · , cn+1} be a locally dual null vector basis of G1,n :=
gen{c1, . . . , cn+1}R. . In natural order let

Sn+1 = c1 · · · ci · · · cj · · · cn+1,

and let
(ij)Sn+1 := c1 · · · cj · · · ci · · · cn+1,

where only ci and cj are interchanged.

Theorem 1 The 2-cycle (ij) acting on Sn gives

(ij)Sn+1 = (−1)n+1(ci − cj)Sn+1(ci − cj)

Proof: Using the properties of local duality, we need only prove the theorem
in locally in S3 = c1c2c3, and for n > 2 extend the argument to Sn+1. In S3,

(c1 − c2)c1(c1 − c2) = c2, (c1 − c2)c2(c1 − c2) = c1,

and (c1 − c2)c3(c1 − c2) = −c3. To avoid a notational nightmare, we complete
the proof for n = 3 in S3+1 = c1c2c3c4. For ci, cj , ck ∈ Sn+1, with ci ̸= cj ,

(ci − cj)S4(ci − cj) = (ci − cj)c1c2c3c4(ci − cj) = (−1)3+1

(ci − cj)c1(ci − cj)(ci − cj)c2(ci − cj)(ci − cj)c3(ci − cj)(ci − cj)c4(ci − cj).

If k ̸= {i, j}, two signs are changed so the sign is positive, and the order of the
null vectors in S4 is unchanged. If k ∈ {i, j}, two signs are again are changed
so the sign is positive, and in this case S4 → (ij)S4.

□
The basic functions (10) - (20) can be extended to apply to the symmetric

group. For example, since for i > p,

c(p)cic(p) = (c1 + · · ·+ cp)cic(p) = (p− cic(p))c(p) = pc(p) − cic
2
(p), (21)

which can be extended to give a formula for c(p)Sn+1c(p). It follows from (21)
that

c(p)(c(p+q) − c(q))c(p) = pqc(p) − (c(p+q) − c(q))c
2
(p). (22)

Another possibly useful formula is

c(p+q)c(p)c(p+q) = c3(p) + 2c2(p)(c(p+q) − c(p)) + (c(p+q) − c(p))c(p)(c(p+q) − c(p)).
(23)
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3 Local duality and Reciprocal Basis

Let {c1, · · · , cn+1} be a locally dual null vector basis ofG1,n := gen{c1, . . . , cn+1}R.
Local duality has many surprising properties. Introducing the notation

Ck := c1 ∧ · · · ∧ ck, (24)

the pseudoscalar of G1,n is Cn+1 = c1 ∧ · · · ∧ cn+1 ∈ Gn+1
1,n .

By local duality with respect to the locally dual basis {c1, · · · , cn+1}, we
mean any expression of the form Cr ·Cs. For example, recalling the definition
of the Gramian determinant,

C2
r = Cr ·Cr = det


1
2

1
2 · · · 1

2 0
1
2

1
2 · · · 0 1

2
. . .

0 1
2

1
2 · · · 1

2


r

=
r − 1

2r
(−1)

(r−1)(r−2)
2 . (25)

For r = 1, 2, 3, . . .,

C2
r = {0, 1

4
,−1

4
,− 3

16
,
1

8
,
5

16
,− 3

16
,
−7

256
, . . .}

Even more interesting is the duality relations Cr · Cr−1 ∈ G1
1,n. For r =

2, 3, 4, 5, C2 · c1 = 1
2c1,

C3 ·C2 =
1

4
(c3−c(2)),C4 ·C3 =

1

8
(2c4−c(3)),C5 ·C4 =

−1

16
(2c5−c(4)). (26)

More generally for r ≥ 2,

Cr ·Cr−1 = (c1 ∧ · · · ∧ cr) · (c1 ∧ · · · ∧ cr−1) =
c(r−1) − (r − 2)cr

2r−1
(−1)

(r−1)(r−2)
2 .

(27)
The proof of (27) starts by showing

Cncn+1 = Cn · cn+1 +Cn+1,

and then expanding

Cn · cn+1 =
1

2
(c1 − c2) ∧ (c2 − c3) ∧ · · · ∧ (cn−1 − cn)

=
1

2
(c1 − c2) ∧ (c2 − c3) ∧ · · · ∧ (cn−1 − cn) ∈ Gn−1

1,n . (28)

For n = 2, 3, C2 ·c3 = 1
2 (c1−c2) and C3 ·c4 = 1

2 (c1−c2)∧(c1−c3), respectively.
A better way of approaching these identities is to start with the observation

that for any k ≥ 1,

Ck ∧ c(k) = 0 =⇒ Ckc(k) = Ck · c(k). (29)
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Dotting Ck ∧ c(k) = 0 on the right by c(k) gives

Ck =
2

k(k − 1)
(Ck · c(k)) ∧ c(k).

For k ≥ 2,

(Ck · c1) ∧ c(k) =
1

k
Ck,

and for 2 ≤ r < k,

(Ck ·Cr) ∧ c(k) =
k − 1

2
Ck · [(c1 − c2) ∧ · · · ∧ (c1 − cr)].

For j, k > 1, the vectors

{c1 − c2, c1 − c3, . . . , c1 − cn} ∈ G1
1,n, (30)

form a basis for the subalgebra G0,n ⊂ G1,n, and has the property

(c1 − cj) · (c1 − ck) = −1 +
1

2
(1− δjk) =

(
−1 for j = k
1
2 for j ̸= k

)
. (31)

Together with the vector c(n+1) = c1 + · · · + cn+1 they form a basis for G1,n.
Note also that c(n+1) · (c1 − ck) = 0, so it is orthogonal and anticommutes with
c1 − ck for each 1 < k ≤ n+ 1. For example,

C3 · [(c1 − c2) ∧ (c1 − c3)] = −1

2
{[C2 · (c1 − c2)] ∧ c3} · (c1 − c3) = −1

4
c(3),

as expected. This identity is easily generalized to

Ck ·
(
(c1 − c2) ∧ · · · ∧ (c1 − ck)

)
= (−1)k

c(k)

2k−1
. (32)

Dotting this last identity on the right by c(k) gives

Ck

(
(c1 − c2) ∧ · · · ∧ (c1 − ck) ∧ c(k)

)
= (−1)k

c2(k)

2k−1
= (−1)k

k(k − 1)

2k
,

which should be compared with (25) as a check for the value of C2
k. With (27)

in hand, and letting 2 ≤ r ≤ n+ 1, we get the basis

{c1, c(2) − c3, c(3) − 2c4, , . . . , c(n) − (n− 1)cn+1} ⊂ G1,n (33)

of an n dimensional subspace of G1,n. Except for the first null vector c1, the
basis is orthogonal and can be normalized. It can be completed to a basis of
G1,n by adding the vector c(n+1).

Given the locally dual basis {c1, · · · , cn+1} ⊂ G1
1,n, using (25), (27) and

introducing the normalizing factor h = 2n+1

n (−1)
n(n−1)

2 , we can easily find its
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reciprocal basis {c1, · · · , cn+1} satisfying ci · cj = δij . For r = n + 1 and
1 ≤ k ≤ n,

ck := −h(cn+1 − ck)Cn+1(cn+1 − ck)(cn+1 − ck)Cn(cn+1 − ck) = −hC̃n+1C̃n,
(34)

where

C̃n+1 := (cn+1 − ck)Cn+1(cn+1 − ck), C̃n := (cn+1 − ck)Cn(cn+1 − ck).

It follows that

ck = −hC̃n+1C̃n = h(cn+1 − ck)Cn+1Cn(cn+1 − ck)

= h(cn+1 − ck)Cn+1 ·Cn(cn+1 − ck) =
2

n

(
c(n)|k→n+1) − (n− 1)ck

)
. (35)

The orthogonalization process in Lorentz-Minkowsk spacetime R1,n has tremen-
dous computational advantages, reducing calculations involving high dimension
determinants to calculations involving simple addition formulas in a locally dual
basis and its reciprocal.

3.1 Euclidean and Lorentz-Minkowski spacetimes

The geometric algebras Gn+1,0, and G1,n of Euclidean and Lorentz-Minkowski
spacetimes, respectively, are intimately related. Indeed, understanding the met-
ric structure of one immediately translates to the metric structure of the other,
and their respectively matrix representations. In order to easily translate from
one to the other in their respective geometric algebras, we introduce the gener-
alized symmetric and antisymmetric geometric products.

Given two multivectors M,M in any geometric algebra Gp,q, the symmetric
M⊙N and antisymmetric M⊗N geometric products are naturally defined by

MN =
1

2
(MN+NM) +

1

2
(MN−NM) = M⊙N+M⊗N, (36)

whereM⊙N := 1
2 (MN+NM) andM⊗N := 1

2 (MN−NM). These generalized
geometric products are useful in understanding the metric structure of geometric
algebras and the many isomorphisms between them.

The geometric algebras G1,n and G1+n,0 are algebraically isomorphic. In the
standard basis of anticommuting gamma vectors γµ, and Euclidean vectors ek,

G1,n := gen{γ0, γ1, . . . , γn}R, Gn+1,0 := gen{e1, . . . , en+1}R,

where γ2
0 = 1 = −γ2

k for 1 ≤ k ≤ n, and e2i = 1 for 1 ≤ k ≤ n+ 1. Noting that
for γk0 := γkγ0,

{γ0, γ10, . . . , γn0},

is a set of a vector together with bivectors in G1,n, all anticommuting, the
isomorphism is established by mapping γ0 → e1 and γk0 → ek+1 for k =
1, . . . , n.
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As an example, the spacetime algebra G1,3 of the Dirac gamma matrices,
and the Euclidean geometric algebra G4,0 are isomorphic. The anticommuting
bivectors σk := γk0 define the geometric algebra G3 of Pauli matrices. For
x = x1σ1 + x2σ2 + x3σ3, and y = y1σ1 + y2σ2 + y3σ3, the basic identity (2)
takes the form

xy = x⊙ y + x⊗ y

in the even subalgebra G+
1,3 of G1,3.

For the null vector c1 ∈ G1
1,n, define the set En of n bivectors

En := {Ek = 2c1 ∧ ck| k = 2, . . . , n+ 1}, (37)

with the same symbol used for the algebra En = gen{E2, . . .En+1}R. It follows
that

En ⊂ G+
1,n ⊂ G1,n. (38)

Each such bivector Ek satisfies Ek = 2c1ck − 1, and E2
k = Ek · Ek = 1. In

addition, Ek ·Ej = 1 for j ̸= k. Now successively calculate

E23 := E2E3 = (2c12 − 1)(2c13 − 1) = 1 + 4c13 − 2(c12 + c13)

= 1 + 2c1(−c2 + c3) = 1 + (−E2 +E3).

E234 =
(
1+2c1(−c2+c3)

)
(2c14−1) = −1+2c1(c2−c3+c4) = (E2−E3+E4).

E2345 =
(
1 + 2c1(−c2 + c3 − c4 + c5)

)
= 1 + (−E2 +E3 −E4 +E5).

More generally

Theorem 2 1) For odd k,

E2···k+1 = −1 + 2c1

k−1∑
j=0

(−1)jcj+2 =

k−1∑
j=0

(−1)jEj+2.

2) For even k > 0,

E1···k+1 = 1 + 2c1

k∑
j=1

(−1)jcj+1 = 1 +

k∑
j=1

(−1)jEj+1.

Since the dimension of En, defined in (37), is

(
n+ 1
2

)
= (n+1)n

2 , one might

think that En is the Lie algebra so(1, n) of bivectors of G1,n. However, this is
not the case since E2 ⊗E3 = E3 −E2, and for k > 2

(E2⊗E3)⊗Ek+1 = (E3−E2)⊗Ek+1 = (Ek+1−E3)− (Ek+1−E2) = E2−E3.

This shows that each such Ek is an eigenbivector of E2⊗E3, so that the bivectors
in En do not cover the Lie algebra so1,n. However, by extending En(⊗) to
En+1(⊗) by including the bivector c2∧c3, we get the Lie algebra so1,n(⊗) ⊂ G2

1,n

of bivectors under the antisymmetric product ⊗.

12



Corollary 1 The bivectors in En+1(⊗) of the Lorentz group of orthogonal trans-
formation in G1,n is isomorphic to the Lie algebra so1,n(⊗). We have

En+1(⊗) =̃ so1,n(⊗) ⊂ G2
1,n ⊂ G+

1,n. (39)

The above theorem tells us that the product E1···k of the bivectors Ej ∈ G2
1,n

is a bivector blade when k is odd, and the sum of 1 plus a bivector blade when
k is even. Importantly, in both of these cases the coordinate matrices of these
quantities are all diagonal, and can be expressed in an alternating series of their
sums.

4 Null vector neural networks

Null vector neural networks can be built from a set of locally dual null vectors
{c1, c2, . . .} satisfying (5), and the Multiplication Table 1. A generic picture of
a neural network is shown in Figure 3. Since geometric multiplication is defined
locally, the size of the network can be expanded without modification of earlier
versions. The total size of the network is determined by the total number of null
vector neurons used in defining all of the layers of the network. At each stage of
development, the number of null vector neurons used determines the size of the
matrix representation of the network. If n + 1 neurons are used, they are the
locally dual null vector basis of the geometric algebra G1,n, which determines its
matrix representation. Properties of a hypothetical Lorentz-Minkowski Neural
Network (LMNN) of null vectors are summarized below.

1 Each neuron is represented by a null vector bias ci ∈ G1
1,n, c

2
i = 0. A

second null vector bi is introduced to capture non-linearity.

2 The untrained inner and outer products of all pairs ci, cj of neurons satisfy

ci · cj = |ci ∧ cj | =
1

2
(1− δij),

where ci · cj := 1
2 (cicj + cjci), and ci ∧ cj :=

1
2 (cicj − cjci).

3 The geometric product of any two neurons is given in Multiplication Table
1, and cicj = ci · cj + ci ∧ cj .

4 In the training a LMNN, each layer of neurons updates inner and outer
products from previous layers.

5 Inner and outer products of null vector neurons, and their biases when
trained, capture geometric relationships hidden in the data.

6 A LMNN introduces a different hierarchy to the standard Euclidean based
neural network, but fully incorporates the latter.
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Figure 3: Generic neural network depicting input, layers, and output
.

7 LMNN, constructed from the geometric algebra G1,n, generalizes the stan-
dard Euclidean approach. The even subalgebra G+

1,n of G1,n contains the
Euclidean GA Gn built up from a set of n anti-commuting hyperbolic
bivectors in G+

1,n.

8 The geometric product of neurons provides a new geometric measure of
the content in data in forward passes or back propagation.

9 Traditionally, the inner product between neurons defines the activation
weights between neurons. The inner and outer products together offer a
more powerful geometric weight between neurons.

5 Future research on LMNN

• Explore how unique properties of G1,n impact training and optimization
of a LMNN.

• Explore the performance of LMNNs on standard data sets in comparison
to the performance of other neural network models.

• Is the structure of a neuron in LMNN closer to the biological stucture of
a neuron in the human or animal brains?

14



• Can a more direct comparison be made between the cognitive processes
and neural function in a model LMNN with that in a biological neural
network?

• Does local duality in hyperbolic Lorentz G1,n make possible a more mod-
ular structure of a neural network than in Euclidean Gn+1,0?

• Does local duality clarify how a LMNN model captures inherent geomet-
rical features in the data?

• Explore how the geometric product between null vector neurons offers a
new geometric measure of the geometric content in diverse data sets.

• Explore how the unique properties of G1,n impacts the training and opti-
mization of a LMNN.

• Explore how how the structure of a graph in [16] might be used to advan-
tage in an LMNN.

• Explore the properties of geometric inner and outer product weights be-
tween neurons with the standard scalar weights.
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Figure 4: From Notices paper On the Geometry of Deep Learning, [1].
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Figure 5: Graph of function defined in equation (18).
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Figure 6: Graph of function defined by the difference (c(p) ∧ c(q))
2 − c(p) · c(q).
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Figure 7: Graph of function defined in equation (19).

18

View publication stats

https://www.researchgate.net/publication/392967741

