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Abstract

Null vectors are metric-free and define oriented rays on the Minkowski-
Einstein lightcone in special relativity, and in higher dimensional null
cones. Separation of partial derivatives on the lightcone gives a new
method for finding harmonic polynomials. Our results can be interpreted
in the Nullcone Model as part of Finsler Geometry [17, 18, 19, 20, 21].
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0. Introduction

This preprint is the most recent work of the author exploring Clifford’s geomet-
ric algebras as a fundamental language for the expression of geometrical ideas
across the scientific and engineering communities, and in the development of the
number concept itself. For a long time I have been concerned by the criticism
that the definition of a matrix, basic to all of linear algebra, should be indepen-
dent of the concept of a metric. But, as is well known, the usual definition of a
Clifford algebra involves the quadratic form of an inner product [3, 5, 14, 16].

The concept of a null vector is independent of a metric in so far as that a
null vector has square 0. The concept of a vector as a directed line segment, can
be made metric free, by simply defining a vector to be an oriented ray in a space
of arbitrary dimension passing through the origin 0. Since Grassmann algebras
are thought of as being metric free, defined entirely in terms of an outer or
exterior product, it is natural to identify null vectors as the generating vectors
of a Grassmann algebra in a larger universal algebra of null vectors, here denoted
by N (F). It then follows that all higher order elements, bivectors, trivectors,
..., multivectors, characterize all the oriented directions of space independent of
any metric [8]. Indeed, in this way, the concept of number itself can be defined
in a metric independent way characterizing oriented directions [9].

Of course, these ideas became possible only after Einstein’s revolutionary
identification of the Minkowskian lightcone of special relativity in spacetime
[4, 15]. The light cone of null vectors in the geometric algebra G1,n makes its
appearance when the generating null vector basis are assumed to have the ad-
ditional structure of local compatibility [10]. This is in contrast to the usual,
supposedly metric free, way of introducing into linear algebra the concept of
contravariant and covariant vectors in the much larger tensor algebra. In re-
lationship to the ideas expounded here, this is what I refer to as global duality
in the geometric algebra Gn,n. The distinction between contravariant and co-
varient vectors is equivalent to introducing additional structure onto a pair of
globally dual Grassman algebras in the universal algebra of null vectors N (F),
[11].

The Universal Algebra of Null Vectors, pictured on the previous page, con-
structed by adding and multiplying metric-free null vectors in Grassmann alge-
bras, represent oriented rays in abstract space. Null vectors in N (F) represent-
ing oriented rays, are thus the basic building blocks of all the objects in linear
algebra and tensor analysis, [3, 14, 9, 12, 8].

Some of the topics treated in this series of papers, either as polished pub-
lications, or on ArXiv, HAL, or as works in progress on Research Gate and
YouTube as part of the Seminar on Fundamental Problemes in Physics, orga-
nized by Professors Jesus Cruz and William Page [19].

3



1 Locally Dual Grassmann algebras

Let N (F) be the Universal Algebra of Null Vectors [7, 10, 11].

Definition: A null vector v ∈ N (F) over the field F is an oriented direc-
tion, or ray, with the property v2 = 0.

Definition: Null vectors v ∈ N (F) are added and multiplied together ac-
cording to the same rules of matrix algebras over the field F .

Theorem: A locally dual Grassmann algebra G(Cn+1) ⊂ N (R) of null vec-
tors, with 2ci · cj := 1− δij for all

ci, cj ∈ Cn+1 = {c1, . . . , cn+1},

and n ≥ 1, gives the geometric algebra,

G1,n := R(e1, f1, . . . , fn)

where, 2 ≤ k ≤ n, C(k) := c1 + · · ·+ ck, αk := −
√
2√

k(k−1)
,

e1 := c1 + c2, f1 := c1 − c2, fk := αk

(
C(k) − (k − 1)ck+1

)
.

The geometric algebra G1,n is isomorphic =̃ to the appropriate matrix algebra
Mat(F), depending on Cartan-Bott periodicity (1− n) modulo(8).

Example: G1,2 := R(e1, f1, f2) = R(e1, f1)(C)=̃G1,1(C), where j := −2c1∧c2∧
c3, j2 = −1.

Spectral basis:

(
c2c1
c1

)
( c2c1 c2 ) =

(
c2c1 c2
c1 c1c2

)
.

Position vector: x := s1e1+s2f1+s3f2 ∈ R1,2, for e1 := c1+c2, f1 := c1−c2,
and f2 = c3 − (c1 + c2).

Position vector in terms of the local basis of null vectors:

x := x1c1 + x2c2 + x3c3 ∈ R1,2, (1)

where x1 = s1 + s2 − s3, x2 = s1 − s2 − s3, x3 = s3.

Coordinate matrix [g] :=

(
g11 g12
g21 g22

)
for g ∈ G1,2:

g := ( c2c1 c1 ) [g]

(
c2c1
c2

)
= g11c2c1 + g21c1 + g12c2 + g22c1c2,

[c1] =

(
0 0
1 0

)
, [c2] =

(
0 1
0 0

)
, [c3] =

(
j 1
1 −j

)
,

where j := −2c1 ∧ c2 ∧ c3, j2 = −1.
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2 Vector gradient and Laplacian in G1,n

The gradient, or vector derivative, ∇ behaves algebraically like a vector in G1
1,n,

and in addition satisfies two basic properties: 1) For any vector w ∈ G1
1,n,

w · ∇ is the directional derivative at the point x ∈ R1,n in the direction of w.
2) ∇x = n + 1 counts the degrees of freedom in tangent space to the vector
manifold at the point x ∈ G1

1,n. Here, we are only considering the manifold to
be R1,n ≡ G1

1,n itself, [3, p.49].
The simplest case is when n = 1. The position vector

x = s1e + s2f = x1c1 + x2c2 ∈ G1
1,1,

where e := c1 + c2 and f1 := c1 − c2, which implies that(
x1
x2

)
=

(
s1 + s2
s1 − s2

)
⇐⇒

(
s1
s2

)
=

1

2

(
x1 + x2
x1 − x2

)
.

The gradient in standard coordinates in G1,1 is

∇ := e
∂

∂s1
− f

∂

∂s2
=⇒ ∇x = e2 − f21 = 2,

and the Laplacian is

∇2 =
∂2

∂s21
− ∂2

∂s22
.

In local coordinates in G1,1,

∇ := (∇x1)
∂

∂x1
+ (∇x2)

∂

∂x2
= 2c2

∂

∂x1
+ 2c1

∂

∂x2
,

[6, (31)]. Thus, the gradient

∇x = 2(c2c1 + c1c2) = 2,

and the Laplacian
∇2 = 4 ∂1∂2 =⇒ ∇2ϕ(x) = 0

for the harmonic function ϕ(x) = (s21 + s22) = 1
2 (x21 + x22).

For n = 2, the gradient in G1,2 in the standard basis is

∇ := e1
∂

∂s1
− f1

∂

∂s2
− f2

∂

∂s3
,

and the Laplacian or Minkowski d’Alembercian is

� ≡ ∇2 =
∂2

∂s21
− ∂2

∂s22
− ∂2

∂s23
.

For the position vector x := s1e1 + s2f1 + s3f2,
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∇x = e2
1 − f21 − f22 = 3,

∇x2 = 2∇̇ẋ · x = 2(e1 e1 · x− f1 f1 · x− f2 f1 · x) = 2x,

and ∇2x2 = 2∇x = 6. For w ∈ G1
1,2,

w · ∇x = w = ∇x ·w. (2)

The null vector gradient in G1,2 is

∇̂ := c1
∂

∂x1
+ c2

∂

∂x2
+ c3

∂

∂x3
,

and the null vector Laplacian is

∇̂2 = ∂1∂2 + ∂1∂3 + ∂2∂3.

For the position vector x := x1c1 + x2c2 + x3c3,

∇̂x = c21 + c22 + c23 = 0,

∇̂x2 = 2
˙̂∇ẋ · x = 2(c1 c1 · x + c2 c2 · x + c3 c3 · x)

=

(
(x2 + x3)c1 + (x1 + x3)c2 + (x1 + x2)c3)

)
, (3)

and the Laplacian ∇̂2x2 = ∇̂(∇̂x2)

=

(
c1(c2 + c3) + c2(c1 + c3) + c3(c1 + c2)

)
= 3. (4)

Surprisingly ∇2x2 = 6, whereas ∇̂2x2 = ∇x = 3 and ∇̂x = 0. It is easy to
generalize formulas (3) and (4) to G1,n. In G1,n, we have

∇̂x2 =

n+1∑
i=1

∨xici, and ∇̂2x2 =
(n+ 1)n

2
, (5)

respectively, where ∨xi := (x1 + · · ·∨xi · · ·+ xn+1) omitting xi from the sum.
In [6, (31)], [8, (34)], it is shown that the vector and nullvector gradients are

related by

∇ = −2∇̂+
2

n
∇(n+1) ⇐⇒ ∇̂ = −1

2
∇+

1

n
∇(n+1),

where the sum gradient

∇(n+1) := C(n+1)∂(n+1),
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C(n+1) := c1 + · · ·+ cn+1 and ∂(n+1) := ∂1 + · · ·+ ∂n+1. For the Laplacian and
nullvector Laplacian,

∇2 =

(
2∇̂+

√
2(n+ 1)

n
∂(n+1)

)(
2∇̂ −

√
2(n+ 1)

n
∂(n+1)

)
,

[8, (36)].
Applying these formulas, for n = 2, the gradient in local coordinates of G1,2

is

∇ = (−c1 + c2 + c3)
∂

∂x1
+ (c1 − c2 + c3)

∂

∂x2
+ (c1 + c2 − c3)

∂

∂x3
,

and the Laplacian is

∇2 = −(∂21 + ∂22 + ∂23) + ∂1∂2 + ∂1∂3 + ∂2∂3

= (∂12 − ∂23) + (∂13 − ∂22) + (∂23 − ∂21). (6)

For n = 3, ∇ = −2∇̂+ 2
3∇(4) and

∇2 = 4(∇̂2 − 1

3
∂2(4)) =

4

3

[∑
i<j

∂i∂j −
∑
i

∂2i

]
.

For n = 4, ∇ = −2∇̂+ 1
2∇(5) and

∇2 = 4(∇̂2 − 3

2
∂2(5)) =

5

2

∑
i<j

∂i∂j −
3

2

∑
i

∂2i .

3 Harmonic polynomials

For n = 2, the Laplacian takes the form

∇2 =
∂2

∂s21
− ∂2

∂s22
− ∂2

∂s23
= ∇̂2 − (∂21 + ∂22 + ∂23)

= (∂23 − ∂21) + (∂13 − ∂22) + (∂12 − ∂23).

By separation of partial derivatives in the locally dual coordinate system {x1, x2, x3}
in G1,2, we can easily find a harmonic 2nd-order homogeneous solution ϕ(x). For

ϕ(x) = (x21 + 2x2x3) + (x22 + 2x1x3) + (x23 + 2x1x2),

∇2ϕ(x) = 0. It is not difficult to find higher order homogeneous solutions to the
Laplace equation ∇2ϕ(x) = 0. For example, for ϕ(x) = x1x2x3 + (x31 +x32 +x33)
it is easily checked that ∇2ϕ(x) = 0. Another 3rd order homogeneous solution
found by Meta Lama 3.1 is

(x31 + x32 + x33)− 3(x21x2 + x1x
2
2 + x22x3 + x1x

2
3 + x22x3 + x2x

2
3).
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The gradient in G1,3 for n = 3 is

∇ := e1∂s1 − f1∂s2 − f2∂s3 − f3∂s4 =
2

3
∇(4) − 2∇̂,

where ∇(4) = C(4)∂(4) = (c1 + · · · + c4)(∂1 + · · · + ∂4), [6, p.9]. The position
vector x ∈ G1

1,3 is

x = s1e1 + s2f1 + s2f2 + s4f3 = x1c1 + x2c2 + x3c3 + x4c4.

As usual,
∇x = 4, w · ∇x = w = ∇̇ ẋ ·w, ∇x2 = 8.

For each coordinate xi we have

∇x1 =
2

3
(−2c1 + c2 + c3 + c4), . . . ,∇x4 =

2

3
(c1 + c2 + c3 − 2c4),

and similarly, ∇s1 = e1, and ∇si = −fi−1 for i = 2, 3, 4.
Recalling that C(k) := c1 + · · ·+ ck. For 1 ≤ k ≤ 4, define

Dk :=
1

2

(
− 2ck + C(4)

)
,

and note that Dj ·Dk = 1
2δjk. It follows that {D1, . . . ,D4} is a nullvector basis

of G1,3. Other interesting properties easily follow. For example,

D1 + D2 = c3 + c4, D1 −D2 = c2 − c1.

These identities should be useful in developing a representation theory based
upon local rather than global duality.
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