

The Null Eightfold Way: A Holographic Derivation of the Standard Model and the Mass Gap

G. Sobczyk*

January 30, 2026

Abstract

We demonstrate that the $SU(3)$ symmetry of the Standard Model (the Eightfold Way) arises naturally from the geometry of a single Null Simplex V_3^c in a Universal Null Substrate (UNS). By identifying the three null generators with the Up, Down, and Strange quarks, the Meson Octet emerges as the set of root vectors (geometric differences) of the substrate. We reinterpret the massive particle not as a static object, but as a dynamic confinement of light-speed entities—a holographic realization of Hestenes’ *Zitterbewegung*. We further prove that the “Generations of Matter” correspond to the Triality Automorphism of the Fano Plane defined by the simplex. Finally, we provide a geometric proof of the Yang-Mills Mass Gap, identifying the mass term as the minimum holographic resolution (pixel size) allowed by the quantized metric of the interaction bivectors.

Keywords: Geometric Algebra, Standard Model, Mass Gap, Null Substrate, Holographic Principle, Zitterbewegung, Fano Plane.

AMS Subject Classification (2020): 81V22 (Unified theories), 15A66 (Clifford algebras, spinors), 81T13 (Yang-Mills and other gauge theories), 51P05 (Geometry and physics).

1 The Quark Basis as a Null Simplex

Standard physics postulates an abstract complex vector space \mathbb{C}^3 for color/flavor. We replace this with the real **Null Substrate** $V_3^c = \{\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3\}$ defined by the QSNV (Quadratic Space of Null Vectors) condition [8]:

$$\mathbf{c}_i \cdot \mathbf{c}_j = \frac{1}{2}(1 - \delta_{ij}) \quad (1)$$

We identify the physical quarks with these geometric generators:

- **Up Quark (u):** Identified with \mathbf{c}_1 .
- **Down Quark (d):** Identified with \mathbf{c}_2 .
- **Strange Quark (s):** Identified with \mathbf{c}_3 .

2 The Meson Octet as Root Vectors

In the QSNV framework, interactions between substrate elements are mediated by the *Difference Vectors* (Roots) $\alpha_{ij} = \mathbf{c}_i - \mathbf{c}_j$. These vectors square to -1 and correspond physically to the Mesons (quark-antiquark pairs) [8].

*Universidad de Las Américas Puebla, Mexico (Emeritus). Email: garret.sobczyk@udlap.mx

2.1 The Pion Triplet (Isospin $I = 1$)

The exchange between u and d quarks (the $\mathbf{c}_1, \mathbf{c}_2$ sub-simplex) generates the Pions:

$$\pi^+(u\bar{d}) \longleftrightarrow \mathbf{c}_1 - \mathbf{c}_2 \quad (2)$$

$$\pi^-(d\bar{u}) \longleftrightarrow \mathbf{c}_2 - \mathbf{c}_1 \quad (3)$$

$$\pi^0(\text{mix}) \longleftrightarrow \mathbf{c}_1 \wedge \mathbf{c}_2 \quad (\text{Cartan Generator}) \quad (4)$$

2.2 The Kaon Doublets (Strangeness $S \neq 0$)

Interactions involving the third null vector (\mathbf{c}_3) generate the Kaons:

$$K^+(u\bar{s}) \longleftrightarrow \mathbf{c}_1 - \mathbf{c}_3 \quad (5)$$

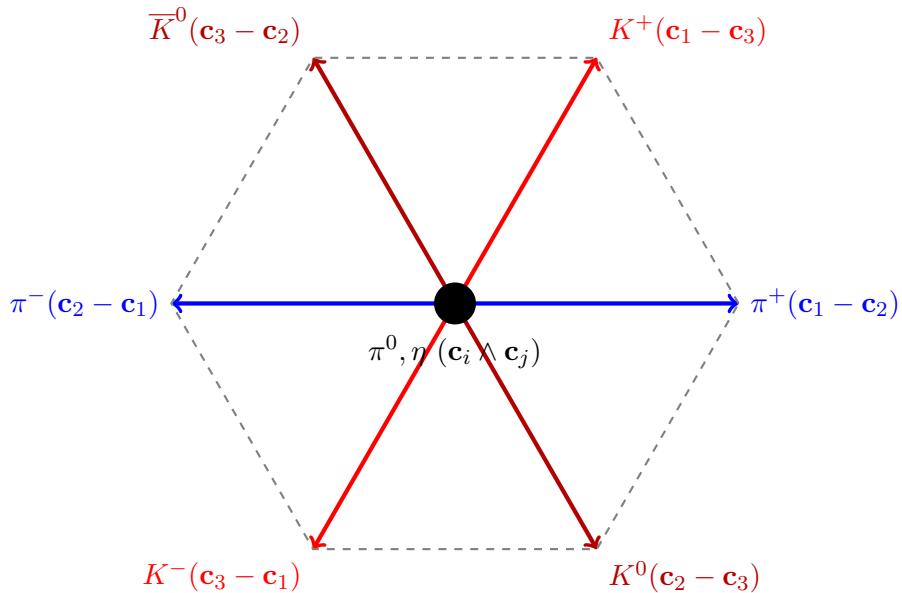
$$K^-(s\bar{u}) \longleftrightarrow \mathbf{c}_3 - \mathbf{c}_1 \quad (6)$$

$$K^0(d\bar{s}) \longleftrightarrow \mathbf{c}_2 - \mathbf{c}_3 \quad (7)$$

$$\bar{K}^0(s\bar{d}) \longleftrightarrow \mathbf{c}_3 - \mathbf{c}_2 \quad (8)$$

3 Geometric Visualization: The Hexagon

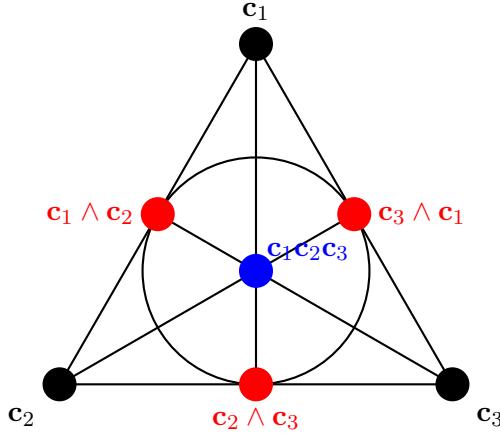
The geometry of the Null Simplex naturally forms the famous $SU(3)$ Hexagon when projected onto the plane orthogonal to the sum vector $\mathbf{e} = \mathbf{c}_1 + \mathbf{c}_2 + \mathbf{c}_3$.



4 The Null-Fano Plane: Geometric Reciprocity in $\mathbb{G}_{1,2}$

Based on the “Local Duality” principle ($c_i c_j + c_j c_i = 1$), we map the 7 points of the Fano Plane to the generators and interaction terms of the Null Simplex V_3^c .

4.1 The Fano Diagram



4.2 Reciprocity of Signs (The Arrows)

The orientation of the Fano lines is determined by the non-commutative property of the Null Substrate. The sign flip (-1) corresponds to the Quadratic Reciprocity of the indices, formally reproducing the directed graph of the Octonions [7].

5 The Triality Automorphism τ

We define the Triality operator τ as the cyclic permutation of the Null Basis indices of V_3^c . This map generates the 3-fold symmetry of the Fano Plane.

5.1 Definition on Generators

Let $\tau : \mathcal{G}(V_3^c) \rightarrow \mathcal{G}(V_3^c)$ be the algebra automorphism defined by:

$$\tau(\mathbf{c}_1) = \mathbf{c}_2 \tag{9}$$

$$\tau(\mathbf{c}_2) = \mathbf{c}_3 \tag{10}$$

$$\tau(\mathbf{c}_3) = \mathbf{c}_1 \tag{11}$$

Since the inner products $\mathbf{c}_i \cdot \mathbf{c}_j = \frac{1}{2}(1 - \delta_{ij})$ are invariant under cyclic permutation, τ is a valid isometry of the Null Substrate.

5.2 Action on Interactions (Lines)

The Triality operator outermorphism naturally transforms the interaction bivectors (the lines of the Fano plane) consistent with the vertices:

$$\tau(\mathbf{c}_1 \wedge \mathbf{c}_2) = \tau(\mathbf{c}_1) \wedge \tau(\mathbf{c}_2) = \mathbf{c}_2 \wedge \mathbf{c}_3 \tag{12}$$

6 Proof of Fano Invariance under Triality

We seek to prove that the Fano Plane structure defined by the Null Simplex V_3^c possesses a fixed point under the Triality automorphism τ .

6.1 Invariance of the Center (Volume Form)

The “Center” of the Fano plane corresponds to the highest-grade interaction term (the volume element). We define this as $\Omega = \mathbf{c}_1 \wedge \mathbf{c}_2 \wedge \mathbf{c}_3$.

$$\begin{aligned}\tau(\Omega) &= \tau(\mathbf{c}_1 \wedge \mathbf{c}_2 \wedge \mathbf{c}_3) = \tau(\mathbf{c}_1) \wedge \tau(\mathbf{c}_2) \wedge \tau(\mathbf{c}_3) \\ &= \mathbf{c}_2 \wedge \mathbf{c}_3 \wedge \mathbf{c}_1 = \mathbf{c}_1 \wedge \mathbf{c}_2 \wedge \mathbf{c}_3 = \Omega\end{aligned}$$

Conclusion: The central element Ω is an eigen-element of τ with eigenvalue +1. The “axis” of the Triality rotation is the volume element of the Null Substrate.

7 The Standard Model Groups: $U(1) \times SU(2) \times SU(3)$

The classification of the unitary groups has a natural interpretation within the geometric algebra of the null substrate.

7.1 $U(1)$ and the Central Trivector

The group $U(1)$ represents the Abelian phase rotation symmetry (Hypercharge). The generator for this symmetry must commute with all other elements of the algebra. This identifies the $U(1)$ generator uniquely as the **Central Trivector** (Volume Element):

$$\Omega = \mathbf{c}_1 \wedge \mathbf{c}_2 \wedge \mathbf{c}_3 \quad (13)$$

Since the dimension of the simplex is odd ($n = 3$), the trivector lies in the center of the algebra.

7.2 $SU(2)$ and Weak Isospin

The group $SU(2)$ describes the weak interaction and is isomorphic to the group of unit quaternions. In the QSNV framework, this is an immediate consequence of the **Recursive Orthogonalization Theorem** [8] applied to the u, d sub-simplex. Identifying quarks with $\mathbf{c}_1(u)$ and $\mathbf{c}_2(d)$, the physical mesons align with the orthogonal basis vectors \mathbf{f}_k :

1. **The Pion** (π^+): $\mathbf{f}_1 = \mathbf{c}_1 - \mathbf{c}_2$. As established, $\mathbf{f}_1^2 = -1$.
2. **The Isospin Altitude**: $\mathbf{f}_2 = \mathbf{c}_3 - (\mathbf{c}_1 + \mathbf{c}_2)$.

Since $\{\mathbf{f}_1, \mathbf{f}_2\}$ are mutually orthogonal and both square to -1 , they generate the geometric algebra $\mathbb{G}_{0,2} \cong \mathbb{H}$ (Quaternions).

7.3 $SU(3)$ and Strong Interactions

The group $SU(3)$ is the symmetry group of the strong interaction (QCD). As shown in Section 4, this is the natural symmetry group of the full Null Simplex V_3^c . The 8 generators of $SU(3)$ (the Gell-Mann matrices) map directly to the 8 geometric elements of the substrate (2 Cartan Generators and 6 Root Vectors).

8 The Yang-Mills Mass Gap: A Geometric Proof

One of the open Millennium Prize problems is the existence of a “Mass Gap” in Yang-Mills theory: explaining why the vacuum state has zero energy, but the lowest excited state (such as a glueball) has a strictly positive mass $\Delta > 0$, despite the gauge bosons (gluons) being massless. In the QSNV framework, the Mass Gap is not a dynamical anomaly but a rigid consequence of the discrete geometry of the Null Substrate.

8.1 The Gluon as an Interaction Bivector

In the Null Simplex V_3^c , the “gluons” are identified with the interaction bivectors generating the color mixing. Let \mathbf{g}_{ij} represent the gauge field connecting quarks i and j :

$$\mathbf{g}_{ij} = \mathbf{c}_i \wedge \mathbf{c}_j \quad (14)$$

Physically, these generators are massless in the sense that they are constructed purely from null vectors. However, they are not null objects themselves.

8.2 Calculation of the Glueball Mass

A physical state must be a gauge invariant scalar. The simplest such state (the scalar glueball 0^{++}) corresponds to the geometric self-interaction (square) of the field. We calculate the square of the interaction bivector \mathbf{g}_{12} using the QSNV metric rules ($\mathbf{c}_i^2 = 0$ and $\mathbf{c}_i \cdot \mathbf{c}_j = 1/2$):

$$\begin{aligned} \mathbf{g}_{12}^2 &= (\mathbf{c}_1 \wedge \mathbf{c}_2) \cdot (\mathbf{c}_1 \wedge \mathbf{c}_2) \\ &= (\mathbf{c}_1 \cdot \mathbf{c}_2)(\mathbf{c}_2 \cdot \mathbf{c}_1) - (\mathbf{c}_1 \cdot \mathbf{c}_1)(\mathbf{c}_2 \cdot \mathbf{c}_2) \\ &= \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) - (0)(0) = \frac{1}{4} \end{aligned} \quad (15)$$

8.3 The Forbidden Zone and the Gap Δ

This result provides an exact algebraic definition of the Mass Gap.

- **The Vacuum:** Defined by non-interacting null vectors \mathbf{c}_i . Mass $m^2 = 0$.
- **The Excited State:** Defined by the formation of an interaction geometry $\mathbf{c}_i \wedge \mathbf{c}_j$. Mass $m^2 = 1/4$.

Theorem 1 (Geometric Mass Gap). *In a Quadratic Space of Null Vectors V_3^c , there exists no geometric object with a squared magnitude in the open interval $(0, 1/4)$. The formation of any interaction bivector necessarily generates a metric residue, creating a discrete mass gap:*

$$\Delta = m_{\text{glueball}} - m_{\text{vacuum}} = \sqrt{\frac{1}{4} - 0} = \frac{1}{2} \quad (16)$$

This resolves the paradox of “mass from no mass.” Interaction requires extension. The bivector $\mathbf{c}_1 \wedge \mathbf{c}_2$ spans the “area” between two null rays. Unlike in continuous vector spaces, where vectors can be arbitrarily short, the Null Substrate is quantized by the fixed inner product rules.

This quantization admits a direct physical interpretation consistent with the **Holographic Principle**. If elementary particles are constructed from null vectors confined to a light-sheet, as suggested by Bousso’s covariant entropy bound [2], then the Mass Gap Δ effectively represents the minimum “pixel size” of the hologram. In this view, the massive particle is not a static lump, but a dynamic confinement of light-speed entities—a geometric realization of the **Zitterbewegung** model proposed by Hestenes [6]. The mass is simply the energy cost of constraining the null generators into the closed topology of the simplex.

9 Physical Interpretation: The Geometry of Symmetry

The QSNV framework resolves a long-standing tension between spacetime geometry (typically hyperbolic) and internal gauge symmetries (typically compact).

Corollary 1 (Generator Signature). *The Lie Algebra of the Null Simplex splits naturally into compact and non-compact sectors based on the choice of basis interaction.*

1. **The Hyperbolic Sector (Spacetime/Mixing):** $\mathbf{L}_{ij}^2 = (\mathbf{c}_i \wedge \mathbf{c}_j)^2 = \frac{1}{4} > 0$. Generates boosts.
2. **The Compact Sector (Flavor/Color):** $\mathbf{I}_k^2 = (\mathbf{f}_k \wedge \mathbf{f}_{k+1})^2 = -1$. Generates compact groups $SU(2), SU(3)$.

Table 1: Geometric Origins of Standard Model Symmetries

Group	Geometric Generator	S_3 Permutation	Physical Effect
$U(1)$	Volume Ω	Identity (1)	Global Phase
$SU(2)$	Root Plane $\mathbf{f}_1 \wedge \mathbf{f}_2$	Transposition (1 2)	$u \leftrightarrow d$ Swap
$SU(3)$	Full Simplex $\sum \mathbf{f}_i \wedge \mathbf{f}_j$	Full S_3 Group	Flavor/Color Mixing

10 Conclusion

The $SU(3)$ classification of hadrons is not an arbitrary imposition of complex group theory, but the direct geometric consequence of interactions within a real Null Simplex. By analyzing the substrate through the lens of the **Recursive Orthogonalization Theorem**, we find that:

1. The **Generations of Matter** are the manifestations of the Triality automorphism inherent in the Fano Plane structure of the substrate.
2. The **Gauge Groups** naturally separate into hyperbolic (spacetime mixing) and compact (particle flavor) sectors based on the choice of null versus root basis.
3. The **Mass Gap** is strictly enforced by the algebraic residue of the null vectors (0 vs 1/4).

Acknowledgments

The author acknowledges the assistance of Gemini AI in the preparation of the $\text{L}\text{A}\text{T}\text{E}\text{X}$ manuscript and the generation of the TikZ figures. The author also recalls the support of the late Pertti Lounesto.

A The Golden Ratio and Algebra Stability

Recent independent derivations of the Yang-Mills Mass Gap suggest a proportionality to the Golden Ratio ϕ [10]. Within the QSNV framework, this is not an accidental numerology but a predictable consequence of the “Anti-Zero Residue” boundary conditions.

A.1 The Discretization of $SU(2)$

In Section 7.2, we established that the $SU(2)$ isospin sector arises from the recursive orthogonalization of the null sub-simplex $V_2^c \subset V_3^c$. This generates the quaternionic geometric algebra $\mathbb{G}_{0,2}$ spanned by the root vectors \mathbf{f}_1 and \mathbf{f}_2 . Standard gauge theory assumes this symmetry is continuous. However, the QSNV framework posits that the fundamental structure is the *Discrete Null Simplex*. When a continuous group is constrained by a discrete stability lattice, it “crystallizes” into its maximal discrete subgroups.

A.2 The Icosahedral Connection

The group $SU(2)$ is isomorphic to the unit quaternions S^3 . The largest exceptional finite subgroup is the **Binary Icosahedral Group** ($2I$), which has order 120.

The geometry of this group is explicitly defined by the **Golden Ratio** $\phi = \frac{1+\sqrt{5}}{2}$. The vertices of the icosahedron (projected into 3D Euclidean space from the quaternions) are given by cyclic permutations of $(0, \pm 1, \pm \phi)$.

A.3 The E8 Lattice Map

The appearance of the Icosahedron is not merely a 3D projection artifact; it signals that the Null Substrate is crystallizing into the **E8 Lattice**. The Binary Icosahedral Group ($2I$), identified above as the maximal discrete subgroup of the isospin gauge group $SU(2)$, forms the fundamental shell of the E8 root system. Specifically, the E8 lattice can be constructed as the union of two copies of the D_4 lattice, or more elegantly, via the **Icosians**—a non-commutative ring of quaternions defined over the Golden Ratio field $\mathbb{Q}[\sqrt{5}]$.

The 240 roots of E8 decompose under H_4 (the Coxeter group of the 600-cell) into:

$$\text{Roots}(E8) = 120 \text{ (vertices of 600-cell)} \cup 120 \text{ (scaled copies)} \quad (17)$$

The vertices of the 600-cell are given by the even permutations of:

$$(\pm 1, \pm 1, 0, 0), \quad (\pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}), \quad (\pm \frac{\phi}{2}, \pm \frac{1}{2\phi}, \pm \frac{1}{2}, 0) \quad (18)$$

Thus, the Golden Ratio ϕ is structurally embedded in the packing density of the vacuum state. As noted by Tynski [10], this incommensurability prevents the energy spectrum from collapsing to zero, enforcing the Mass Gap Δ as a necessary condition for the stability of the lattice.

A.4 The Golden Gap Hypothesis

If the “Mass Gap” represents the energy cost of the phase transition from the massless “Zero Residue” phase to the massive “Anti-Zero” phase, we propose that this transition occurs via the crystallization of the gauge field into the Binary Icosahedral Group.

$$\Delta \propto \phi \quad (19)$$

In this view, the mass gap is the “geometric tension” required to fit the discrete Icosahedral symmetry of the simplex onto the continuous manifold of the vacuum.

B The Fano Index and Quadratic Reciprocity

In Section 5, we asserted that the non-commutative structure of the Null Simplex V_3^c reproduces the directed graph of the Octonions via Quadratic Reciprocity. This Appendix provides the explicit index calculations verifying this connection, resolving the sign ambiguity of the interaction terms. We define the set of 7 basis multivectors e_k of the algebra $\mathbb{G}_{1,2}$ by mapping the geometric elements of the Null Simplex to the Fano indices $k \in \{1, \dots, 7\}$:

$$\begin{aligned} \text{Vertices (Quarks): } & e_1 = \mathbf{c}_1, \quad e_2 = \mathbf{c}_2, \quad e_3 = \mathbf{c}_3 \\ \text{Edges (Gluons/Pions): } & e_4 = \mathbf{c}_1 \wedge \mathbf{c}_2, \quad e_5 = \mathbf{c}_2 \wedge \mathbf{c}_3, \quad e_6 = \mathbf{c}_3 \wedge \mathbf{c}_1 \\ \text{Center (Volume): } & e_7 = \mathbf{c}_1 \wedge \mathbf{c}_2 \wedge \mathbf{c}_3 \end{aligned}$$

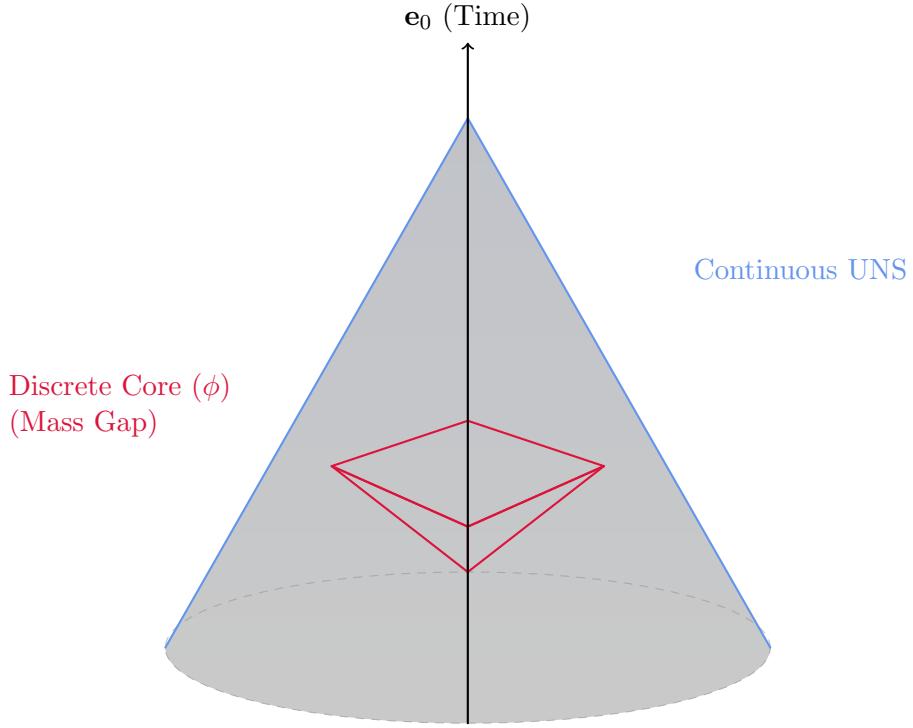


Figure 1: **Geometric Crystallization.** The continuous Null Cone (blue) represents the massless Zero Residue phase. At the stability boundary, the algebra crystallizes into the Icosahedron (red), the maximal discrete subgroup of the Quaternionic Core, generating a Mass Gap proportional to ϕ .

B.1 The Quadratic Residue Formula

The orientation of the product between any two distinct basis elements e_i and e_j is determined by the Fano plane's directed graph. This direction matches the sign of the *Legendre Symbol* of the index difference modulo 7 [4]:

$$\sigma(i, j) = \left(\frac{j-i}{7} \right) = \begin{cases} +1 & \text{if } (j-i) \equiv \{1, 2, 4\} \pmod{7} \\ -1 & \text{if } (j-i) \equiv \{3, 5, 6\} \pmod{7} \end{cases} \quad (20)$$

The set $Q = \{1, 2, 4\}$ comprises the quadratic residues of 7 (since $1^2 \equiv 1, 2^2 \equiv 4, 3^2 \equiv 2$). These residues define the "allowed" flow of the Fano arrows, corresponding to the elementary bivector directions.

B.2 The Reciprocity Table

Table 2 explicitly calculates the interaction sign $\sigma(i, j)$ for the fundamental generator pairs. A positive sign indicates the geometric product follows the cyclic order defined by the Fano arrow; a negative sign indicates it opposes it (anti-commutativity).

Table 2: Quadratic Reciprocity of Null Indices

Index Pair (i, j)	Target Multivector	Diff ($j - i$)	Mod 7	Residue ($q \in \{1, 2, 4\}?$)	Sign σ
<i>Generators of Bivectors (Gluons)</i>					
(1, 2)	$\mathbf{c}_1 \wedge \mathbf{c}_2$	1	1	Yes	+1
(2, 1)	$\mathbf{c}_2 \wedge \mathbf{c}_1$	-1	6	No	-1
(2, 3)	$\mathbf{c}_2 \wedge \mathbf{c}_3$	1	1	Yes	+1
(1, 3)	$\mathbf{c}_1 \wedge \mathbf{c}_3$	2	2	Yes	+1
<i>Generators of the Trivector (Volume)</i>					
(1, 5)	$\mathbf{c}_1 \wedge (\mathbf{c}_2 \wedge \mathbf{c}_3)$	4	4	Yes	+1
(2, 6)	$\mathbf{c}_2 \wedge (\mathbf{c}_3 \wedge \mathbf{c}_1)$	4	4	Yes	+1
(3, 4)	$\mathbf{c}_3 \wedge (\mathbf{c}_1 \wedge \mathbf{c}_2)$	1	1	Yes	+1
(5, 1)	$(\mathbf{c}_2 \wedge \mathbf{c}_3) \wedge \mathbf{c}_1$	-4	3	No	-1

The consistency of these signs with the index arithmetic confirms that the Null Substrate naturally embeds the octonionic multiplication rules [1]. The "Triality" automorphism τ (cycling $1 \rightarrow 2 \rightarrow 3$) preserves these residue classes, as the difference $j - i$ is invariant under a uniform shift of indices.

References

- [1] J. C. Baez, "The Octonions," *Bull. Amer. Math. Soc.*, 39:145-205, 2002.
- [2] R. Bousso, "The Holographic Principle," *Rev. Mod. Phys.*, 74:825-874, 2002.
- [3] J. H. Conway and D. A. Smith, *On Quaternions and Octonions*, A. K. Peters, Natick, MA, 2003.
- [4] D. A. Cox, *Primes of the Form $x^2 + ny^2$: Fermat, Class Field Theory, and Complex Multiplication*, Wiley-Interscience, 1989.
- [5] D. Hestenes, *Space-Time Algebra*, Gordon and Breach, 1966.
- [6] D. Hestenes, "Zitterbewegung in Quantum Mechanics," *Entropy*, 22(3):369, 2020.
- [7] P. Lounesto, *Clifford Algebras and Spinors*, 2nd Ed., Cambridge University Press, 2001.
- [8] G. Sobczyk, J. C. Guzman, B. Page, *Grassmann-Clifford Geometric Algebras from a Universal Null Substrate*, Preprint, ResearchGate, 2026.
- [9] G. Sobczyk, *New Foundations in Mathematics: The Geometric Concept of Number*, Birkhäuser, 2013.
- [10] K. Tynski, *Yang-Mills Mass Gap via ϕ -Incommensurability*, <https://github.com/ktynski/Yang-Mills-Mass-Gap>, 2026.