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Abstract

Null vectors are metric-free and define oriented rays on
the Minkowski-Einstein light-cone in special relativity, and
in higher dimensional null cones. The concepts of local and
global duality on a set of nullvectors makes possible a new
classification scheme of real and complex Clifford geomet-
ric algebras. It is conjectured that Finsler Geometry is
equivalent to Nullvector Manifolds.

Nullvector Tree

Universal Algebra of Null Vectors:                     N                                       

Grassmann algebras
of null vectors:          G(A)                                 G(B)                             G(C)              

                                                Global duality                                   Local duality                               

Geometric algebras:                        Gn,n
                                                                      Gn,1                               G1,n  

                                                    { A,B}                                         C+- = {c0, … , cn }+-

                                                                                               

                                                                                          A* = B                                                            {c*
i = -cj }-          {c*

i = cj }+

                                                                                  A** = B* = A                                               {c**
i = -cj

*= ci }-   {c**
i = cj

* = ci }+                                   

                                                                                                                    |G1,n|2
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1. Universal Algebra of Null Vectors N (F)
Definition: A null vector v ∈ N (F) over the field F

is an oriented direction, or ray, with the property v2 = 0.

Definition: Null vectors v ∈ N (F) are added and
multiplied together according to the same rules of matrix
algebras over the field F .

Definition: A 2n-dimensional Grassmann algebra

Gn(Vn) ⊂ N (F)

of multivectors is generated by a set of n anticommuting
null vectors {v1, . . . ,vn} ⊂ N 1(F), under the operations
of addition and multiplication.

G0,0,n ≡ Gn(Vn) := span{1,V1
λ1
, . . . ,Vn

λn
, }F ⊂ N (F),

where, for 1 ≤ k ≤ n, and integers αi,

Vk
λk

:= {vα1
· · ·vαk

| {1 ≤ α1 < · · · < α(n
k

) ≤ n} ⊂ Gk
0,0,n

are the oriented directions of the

(
n
k

)
-basis of null k-

vector blades of in Gk
0,0,n, [6] .

Example: For n = 3, the complex Grassmann alge-
bra of null vector blades in G0,0,3(C),

G0,0,3 ≡ G3(C) = span{1,v1,v2,v3,v12,v13,v23,v123}C,
for vij := vivj ≡ vi ∧ vj = −vjvi and v123 := v1v2v3.

|v1 + iv2|2 := |(v1 + iv2)(v1 − iv2)| = 2|i(v1 ∧ v2)|
|(iv1 ∧ v2)(−iv1 ∧ v2)| = |v1v2v1v2| = 0.
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2. Local and Global Duality in N (F)

A single null vector c0 ∈ N 1(F) is identified with a cho-
sen oriented ray in any direction, and {c0}F =̃F .

Definition: Two null vectors v1,v2 ∈ N 1(F) are
said to be ±conjugate if

v1 · v2 := v1v2 + v2v1 = ±1,

respectively. It follows that v1v2 and v2v1 are mutually
annihilating idempotents that partition ±1, respectively.
Note that the conjugate null vectors v1,v2 ∈ N (C), are
NOT anti-commutative Grassmann null vectors.

Definition: A set

Vn = {v1, . . . ,vn} ⊂ N (F)

of null vectors are said to be correlated if for each 1 ≤
i 6= j ≤ n

2vi · vj := vivj + vjvi 6= 0,

and to be locally dual if they are pairwise conjugate, i.e.

2vi · vj := vivj + vjvi = 1− δij,

Definition: Two Grassmann Algebras G(An) and
G(Bn) in N (F), generated by the null vectors

An = {a1, . . . an} and Bn = {b1, . . .bn},
are said to be compatible if for all 1 ≤ i ≤ n,

2ai · bi := aibi + biai 6= 0,

and globally dual if for all 1 ≤ i, j ≤ n,

2ai · bj := aibj + bjai = δij,

[9].
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3. The geometric algebras Gn,n ⊂ N (R)

Theorem: For n ≥ 1, two globally dual Grassmann
Algebras G(An) and G(Bn),

An = {a1, . . . an} and Bn = {b1, . . .bn},

define the 22n-dimensional geometric algebra

Gn,n(R) := R(e1, . . . , en, f1, . . . , fn),

where ei := ai + bi, fi := ai − bi are anticommutative,

and Gn,n=̃Mat2n(R), [11, p.61].

Example: G1,1 := R(e, f)

Spectral basis:

(
ba
a

)
( ba b ) =

(
ba b
a ab

)
.

Position vector: x := x1e+y1f ∈ R1,1, for e := a+b,

f := a− b, and satisfy e2 = 1 = −f2, ef = −fe .

Coordinate matrix [g] :=

(
g11 g12
g21 g22

)
for g ∈ G1,1:

g := ( ba a ) [g]

(
ba
b

)
= g11ba + g21a + g12b + g22ab.

[a] =

(
0 0
1 0

)
, [b] =

(
0 1
0 0

)
.
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4. Locally Dual Grassmann algebras

Theorem: A locally dual Grassmann algebra G(Cn+1) ⊂
N (R) of null vectors, with 2ci · cj := 1− δij for all

ci, cj ∈ Cn+1 = {c1, . . . , cn+1},

and n ≥ 1, gives the geometric algebra,

G1,n := R(e1, f1, . . . , fn)

where, 2 ≤ k ≤ n, Ck := c1 + · · ·+ ck, αk := −
√
2√

k(k−1)
,

e1 := c1 + c2, f1 := c1 − c2, fk := αk

(
Ck − (k − 1)ck+1

)
.

The geometric algebra G1,n is isomorphic =̃ to the ap-
propriate matrix algebra Mat(F), depending on Cartan-
Bott periodicity (1− n) modulo(8).

Example: G1,2 := R(e1, f1, f2) = R(e1, f1)(C)=̃G1,1(C),
where j := −2c1 ∧ c2 ∧ c3, j2 = −1.

Spectral basis:

(
c2c1
c1

)
( c2c1 c2 ) =

(
c2c1 c2
c1 c1c2

)
.

Position vector: x := x1e1 + y1f1 + y2f2 ∈ R1,2, for
e1 := c1 + c2, f1 := c1 − c2, and f2 = c3 − (c1 + c2).

Coordinate matrix [g] :=

(
g11 g12
g21 g22

)
for g ∈ G1,2:

g := ( c2c1 c1 ) [g]

(
c2c1
c2

)
= g11c2c1+g21c1+g12c2+g22c1c2,

[c1] =

(
0 0
1 0

)
, [c2] =

(
0 1
0 0

)
, [c3] =

(
j 1
1 −j

)
.
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5. The symmetric group Sn+1 in G1,n

Let G1,n := gen{c1, . . . , cn+1}R in its locally dual null
vector basis. In natural order let

Sn+1 = c1 · · · ci · · · cj · · · cn+1,

and let

(ij)Sn+1 := c1 · · · cj · · · ci · · · cn+1,

where only ci and cj are interchanged.

Theorem: The 2-cycle (ij) acting on Sn gives

(ij)Sn+1 = (−1)n+1(ci − cj)Sn+1ci − cj)

Proof:

In G1,2, let S3 = c1c2c3. Then

(c1 − c3)S3(c1 − c3) = −c3c1c2c3c1 = −c3(1− c2c1)c3c1

= c3c2c1c3c1 = c3c2c1.

Since,

(c1 − c2)c3(c1 − c2) = −c3, (c1 − c2)c1(c1 − c2) = c2,

and (c1 − c2)c2(c1 − c2) = c1, the proof is easily com-
pleted. [8].

�
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Nullvector Tree

Universal Algebra of Null Vectors:                     N                                       

Grassmann algebras
of null vectors:          G(A)                                 G(B)                             G(C)              

                                                Global duality                                   Local duality                               

Geometric algebras:                        Gn,n
                                                                      Gn,1                               G1,n  

                                                    { A,B}                                         C+- = {c0, … , cn }+-

                                                                                               

                                                                                          A* = B                                                            {c*
i = -cj }-          {c*

i = cj }+

                                                                                  A** = B* = A                                               {c**
i = -cj

*= ci }-   {c**
i = cj

* = ci }+                                   

                                                                                                                    |G1,n|2
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6. The Fundamental Relationship between

Local and Global Duality

The relationship between Clifford algebras is always con-
fusing, none-the-less, extremely important. Starting with
the concepts of a null vector and local duality, all of mul-
tilinear algebra and representation theory can be based
upon these two concepts, instead of the traditional ap-
proach using (global) duality between vectors and co-
vectors in tensor analysis and Category theory [7, 10].

The most interesting relationships between global and
local duality are summarized in the following sequence of
isomorphic real and complex geometric algebras G2n+1,0(R)
and G2n,0(C). We have,

G2n−1,1(C)=̃Gn,n+1(R)=̃

G2n,1(R)
OR

G1,2n(R)

 =̃G1,2n−1(C). (∗)

In the standard basis,

Gn,n+1(R) := gen{e1, . . . , en, f1, . . . , fn, fn+1}R.

That G2n,0(C)=̃Gn,n+1(R), follows from the fact that the
pseudoscalar i := e1···nf1···n+1 is in the center of Gn,n+1

and i2 = −1. However, there is a critical difference in
the meaning of these two isomorphic, but different, geo-
metric algebras. One of these geometric algebras is real,
so that all of its multivectors have an exact geometric in-
terpretation, whereas in the other, the meaning of imag-
inary multivectors is hypothetical. This has important
theoretical implications in the interpretation of the Pauli
matrices [3, 14].
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Consider now the split isomorphism

Gn,n+1(R)=̃

G2n,1(R)
OR

G1,2n(R)

 ,

which follows from the basic fact that either

{2n− 1 OR 1− 2n} = {3 OR 7} Mod 8.

The split isomorphism tells us that the real geometric
algebra Gn,n+1(R) is alternately isomorphic to G2n,1(R)
or G1,2n(R), respectively. They are also alternately iso-
morphic to the corresponding matrix algebras over the
complex numbers. For example,

G1,2 =̃ Mat2(C), and G2,1 =̃ 2Mat(R),

and

G1,4 =̃ 2Mat2(H), and G4,1 =̃ Mat4(C).

Because signature is unimportant when considering geo-
metric algebras over the complex numbers,

G2n−1,1(C)=̃G2n(C)=̃G1,2n−1(C).

Every geometric algebra Gp,q has a unique geomet-
ric structure when it is expressed in terms of the fun-
damental null vectors generators of the universal null
vector algebras N (F), regardless of whether in terms
of real Mother geometric algebras Gn,n(F), or in terms
of real Father geometric algebras G1,2n−1(F). In both
cases their corresponding isomorphic coordinate matrix
representations serve as powerful computational tools.
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Examples:

For G1,2(R) := gen{e1, f1, f2}R, the pseudoscalar

i := e1f1f2 = e1(if1)(−if2) = e1e2e3,

where e2 := if1 = e1f2 and e3 := −if2 := e1f1. By iden-
tifying the bivectors e1f2, e1f1 ∈ G2

1,2 as anti-commuting
basis vectors e1, e2, e3 ∈ G1

3,0(R), we have almost magi-
cally turned the geometric algebra G1,2 into the isomor-
phic geometric algebra algebra of Euclidean space G3,0.
Summarizing,

G1,2 =̃G3,0 =̃Mat2(C).

This observation is not without important physical con-
sequence. The coordinate matrices of the Euclidean vec-
tors makeup the Pauli matrices of quantum mechanics.

Let j :=
√
−1 ∈ C, and S := je1f1f2.

G2,1(R) := {1, e1, f1, jf2, e1f1, je1f2, e1f2, je1f1f2}R

G0,3(R) := {1, je1, f1, f2, je1f1, je1f2, f1f2, je1f1f2}R.
In each of these cases we must interpret j 6= i = e1f1f2,
otherwise the pseudoscalar element would not be well
defined.

For G2,1, note that S+ + S− = 1 and S+S− = 0. It
follows that

G2,1 = {1, e1, f1, e1f1}+ J{1, e1, f1, e1f1} =̃ 2Mat(R),

and for G0,3,

G0,3 = {1, je1, f1, je1f1}+ J{1, je1, f1, je1f1} =̃ 2H.

10



Let us now consider the 5th line of the Classification
Tables [4, p.217] and [11, p.74] for the geometric algebras
G4,0,G3,1,G2,2,G1,3 and G0,4. We have

G2,2 =̃G3,1 =̃Mat4(R). (∗∗)

The geometric algebra G2,2 is used in the Finsler Geom-
etry Model, [16]. The geometric algebra G3,1 is used in
the conformal model of Euclidean space [1, 12]. We have
already discussed

Gn,n =̃Mat2n(R), and Gn,n+1 =̃Mat2n+1(C).

To show G3,1 =̃G2,2, note that

gen{e1, e2, e3, f1} = gen{f1, e123, f1e1, f1e3},

and satisfy the universal property that product of the
anti commuting elements, treated as the generating vec-
tors in G3,1, have the proper signature {+,+,−,−}, and

(f1)(e123)(f1e1)(f1e3) = −e2.

This shows that the vector−e1 ∈ G1
3,1 is the pseudoscalar

element f1e123f1e1f1e3 ∈ G4
2,2.

We now identify the isomorphisms

G1,3 =̃G0,4 =̃G4,0=̃Mat2(H).

For G1,3, let S := f123,S± = 1,
2 (1± S). Then

G1,3 = span{1, f1, f2, f12}+spanS{1, f1, f2, f12} =̃Mat2(H).

The locally dual geometric algebra G1,3, see equation
(*), models the famous Dirac matrices, and is the Space-
time Algebra of special relativity [3]. For G0,4, let S :=
f1234,S± = 1,

2 (1± S). Then

G0,4 = span{1, f1, f2, f12}+spanS{1, f1, f2, f12} =̃Mat2(H),

11



and finally for G4,0

G4,0 =̃ gen{e1, f1e1, f2e1, f3e1} =̃G1,3 =̃Mat2(H).

It is possible that each of these isomorphisms might have
different physical consequences [1, 3, 12, 5].

7. Nullvector Manifolds and Finsler geometry

In his 1996 paper, “Finsler Geometry is Just Riemannian
Geometry without the Quadratic Restriction”, Shiing-
Shen Chern, gives an introduction to Finsler Geometry,
and with coauthors, wrote a comprehensive book on the
subject [16, 18]. Other research has explored the topic
in terms of Kaluza-Klein structures [17]. In a just an-
nounced Ph.D. thesis, Sjors Heefer examines the possi-
bility that Finsler Geometry may be the key to the long
sought after unification of quantum mechanics with gen-
eral relativity [19].

In [2, 15, 13], the authors explored the concept of a
vector manifold as a coordinate free approach to man-
ifolds, usually expressed in terms of differential forms
and tensor analysis. We generalize the concept of a vec-
tor manifold to two kinds of Finsler Geometries (FM), a
globally dual FM and a locally dual FM in the appropri-
ately defined global and local Nullvector Manifolds.

In a vector manifold, partial derivatives playing the
role of contravariant vectors, are replaced by directional
derivatives, and covariant vectors are replaced by their
dual nullvector equivalents. In global duality, we replace
contravariant and covariant vectors by nullvectors ai and

12



bj,

∂

∂xi
→ ai = ai · ∇F x and

∂y

∂yj
→ bj = ∇Fϕj(y),

respectively. In addition,

ai · bj :=
1

2
(aibi + biai) =

1

2
δij

guarantees that ai,bj ∈ G1
n,n=̃Mat2n(R)

Local duality is a different story. A set of (n + 1)-
nullvectors {c0, . . . , cn} are said to be locally dual if each
pair of nullvectors ci, cj satisfies

∂

∂xi
→ ci := ci · ∇F x and

∂x

∂xj
→ cj := ∇F ϕ(x),

where ∇F is the nullvector gradient. In addition,

ci · cj :=
1

2
(cici + cici) =

1

2
(1− δij),

guarantees that ci, cj ∈ G1
1,n. In spaces that are locally

dual, and n + 1 is even, the distinction between con-
travariance and covariance is lost, or both are contravari-
ant and covariant at the same time! In the case n = 3,
the two different geometric algebras G2,2(R)=̃G3,1(R)
are isomorphic to the same matrix algebra Mat4(R), see
equation (**).

We now show how S-S. Chern’s Finsler Geometry trans-
lates into equivalent globally and locally dual geometric
Nullvector Manifolds. A locally dual Finsler Geometry
is a pair (F (x,y),M) defined by n + 1 points on the
nullcone in the geometric algebra G1,n, where both the
tangent and cotangent bundles at the point x ∈ M is

13



spanned by

TF = T∗M ≡ span{c0, c1, . . . , cn} =
1

2
∇F[F2] = G1

1,n.

In this case, the metric is defined by the (x,y)-Hessians

[gij] := 2ci · cj =
1

2
{[F2

yiyj
]} =

1

2
{[F2

xixj
]} = [1− δij],

[16], and [18, pp.5-8].
A globally dual Finsler Geometry is a pair (F (x,y),M)

defined by 2n points on the nullcone in the geometric al-
gebra Gn,n, where the tangent bundle TM and the cotan-
gent bundle T∗M are spanned by the sets {a1, · · · , an}
and {b1, . . . ,bn}, respectively. That is

TM ≡ span{a1, . . . , an} · ∇F x ⊂ Gn,n,

and

T∗M ≡ ∇F {ϕ(y)} = span{b1, . . . ,bn} ⊂ G1
n,n,

In this case, the metric is defined by the (x,y)-Hessians

[gij] := 2ai · bj =
1

2
{[F2

xiyj
]} =

1

2
{[F2

yixj
]} = [δij].

Finally, as might be expected, a complex Finsler Ge-
ometry is defined by complexifiying both the global and
local nullvector manifolds over the complex numbers C.
See equation (∗).
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