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Abstract
This article explores geometric number systems that are obtained by extending

the real number system to include new anticommuting square roots of ±1, each
such new square root representing the direction of a unit vector along orthogonal
coordinate axes of a Euclidean or pesudoEuclidean space. These new number
systems can be thought of as being nothing more than a geometric basis for tables
of numbers, called matrices. At the same time, the consistency of matrix algebras
prove the consistency of our geometric number systems. The flexibility of this
new concept of geometric numbers opens the door to new understanding of the
nature of spacetime, the concept of Pauli and Dirac spinors, and the famous Hopf
fibration.
AMS Subject Classification: 15A66, 81P16
Keywords: geometric algebra, spacetime algebra, Riemann sphere, relativity, spinor,
Hopf fibration.

1 Introduction
The concept of number has played a decisive role in the ebb and flow of civilizations
across centuries. Each more advanced civilization has made its singular contributions
to the further development, starting with the natural “counting numbers” of ancient
peoples, to the quest of the Pythagoreans’ idea that (rational) numbers are everything,
to the heroic development of the “imaginary” numbers to gain insight into the solution
of cubic and quartic polynomials, which underlies much of modern mathematics, used
extensively by engineers, physicists and mathematicians of today [4]. I maintain that
the culmination of this development is the geometrization of the number concept:

Axiom: The real number system can be geometrically extended to include
new, anti-commutative square roots of±1, each new such square root rep-
resenting the direction of a unit vector along orthogonal coordinate axes
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of a Euclidean or pseudo-Euclidean space Rp,q. The resulting associative
geometric algebra is denoted by Gp,q.

Whereas we have stated our Axiom for finite dimensional geometric algebras, there
is no impediment to applying it to infinite dimensional Hilbert spaces as well. But
mainly we shall be interested in developing the ideas as they apply to the 8 dimensional
real geometric algebra G3 of space, which is the natural generalization of the familiar
Gibbs-Heaviside vector algebra of the dot and cross products, the complex numbers of
i =
√
−1, and Hamilton’s quaternions. The antecedents of our geometric algebras can

be found in the works of W. K. Clifford [2], H. Grassmann [6], and W. Hamilton [7].

2 The geometric algebra of space G3

The most direct way of obtaining the geometric algebra G3 of the Euclidean space R3

is to extend the real number system R to include three new anti-commutating square
roots e1,e2,e3 of +1, that represent unit vectors along the respective xyz-coordinate
axes. Thus, e1,e2,e3 ̸∈ R and e2

1 = e2
2 = e2

3 = 1. The resulting associative geometric
algebra G3 :=R(e1,e2,e3), as a real linear space, has the 23 = 8-dimensional standard
basis

G3 = spanR{1,e1,e2,e3,e12,e13,e23,e123},

where e jk := e jek = −eke j represent unit bivectors in the three xy,xz,yz-coordinate
planes, for j ̸= k, and I := e123 = e1e2e3 represents the oriented directed trivector, or
pseudoscalar of element of space. The even sub-algebra G+

3 = spanR{1,e12,e13,e23}
of G3 is algebraically isomorphic to the algebra of quaternions. The geometric numbers
of 3-dimensional space R3 are pictured in Figure 1.

To see that the rules of our geometric algebra are consistent, we relate it immedi-
ately to the famous Pauli algebra P of square 2×2 matrices over the complex numbers
C, [11]. The most intuitive way of doing this is to introduce the mutually annihilating
idempotents u± := 1

2 (1± e3), which satisfy the rules

u2
+ = u+,u2

− = u−,u+u− = 0,u++u− = 1,u+−u− = e3.

In addition, e1u+ = u−e1. All these rules are easily verified and left to the reader. An-
other important property of the geometric algebra G3 is that the pseudoscalar element
I = e123 is in the center of the algebra commuting with all elements, and I2 = −1.
Thus, I can take over the roll of the unit imaginary i =

√
−1.

By the spectral basis SG of the geometric algebra G3, we mean

SG :=
(

1
e1

)
u+ (1 e1 ) =

(
u+ e1u−

e1u+ u−

)
, (1)

where I is taking over the roll of i =
√
−1 in the usual Pauli algebra. Any geometric

number g= s+It+a+Ib∈G3 corresponds directly to a Pauli matrix [g], by the simple
rule

g = (1 e1 )u+[g]
(

1
e1

)
.
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Figure 1: Scalars, vectors, bivectors and trivectors (pseudoscalars) make up the geo-
metric numbers of space.

Since the rules of geometric addition and multiplication are fully compatible with the
rules of matrix addition and multiplication, matrices over the geometric algebra G3 are
well defined.

For example, the famous Pauli matrices [e1], [e2], [e3] are specified by

[e1] :=
(

0 −1
1 0

)
, [e2] :=

(
0 −I
I 0

)
, [e3] :=

(
1 0
0 −1

)
, (2)

as can be easily checked. For [e2], we have

e2 = (1 e1 )u+

(
0 −I
I 0

)(
1
e1

)
= Ie1(u+−u−) = Ie1e3.

The Pauli algebra P and the geometric algebra G3 are isomorphic algebras over the
complex numbers defined by C := R(I). The geometric product of g1g2 ∈ G3 cor-
responds to the product of the matrices [g1][g2] = [g1g2]. The great advantage of the
geometric algebra G3 over the Pauli algebra P , is that the geometric numbers are lib-
erated from their coordinate representations as 2×2 complex matrices, as well as being
endowed with a comprehensive geometric interpretation. On the other hand, the con-
sistency of the rules of the geometric algebra G3 follow from the known consistency
of rules of matrix algebra, and offer a computational tool for computing the product of
geometric numbers. More generally, every geometric algebra Gp,q is algebraically iso-
morphic to a real matrix algebra, or a sub-algebra of a real matrix algebra of sufficiently
high dimension [13].

It is worthwhile to offer a summary of the deep relationship between pre-relativistic
Gibbs-Heaviside vector algebra [3], and the geometric algebra G3. The geometric
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product of two vectors a,b ∈G1
3 is given by

ab =
1
2
(ab+ba)+

1
2
(ab−ba) = a ·b+a∧b, (3)

where the inner product a ·b := 1
2 (ab+ba), and the outer product a∧b := 1

2 (ab−ba)
has the interpretation (due to Grassmann) of the bivector in the plane of the vectors a
and b. The bivector a∧b = I(a×b), where a×b is the vector normal to the plane of
a∧b, and is its dual.

Another advantage of the unified geometric product ab over the inner product a ·b
and the cross product a×b, is the powerful cancellation rule

ab = ac ⇐⇒ a2b = a2c ⇐⇒ b = c,

provided of course that a2 ̸= 0. It takes knowledge of both a · b and a∧ b (or a× b
in R3), to uniquely determine the relative directions of the vectors a and b in Rp,q,
the pseudo-Euclidean space of p+ q dimensions. Another unique advantage of the
geometric algebra is the Euler formula made possible by (3),

ab = |a|b|eIĉθ = |a||b|(cosθ + Iĉsinθ),

where |a| :=
√

a2 and similarly for |b|, and θ is the angle between the vectors a and
b. The unit vector ĉ can be defined by ĉ = a×b

|a×b| . The Euler formula, for the bivector
Iĉ which has square −1, is the generator of rotations in the plane of the bivector a∧b.
Later, when talking about Lorentz boosts, we will also utilize the hyperbolic Euler form

eϕ ĉ = coshϕ + ĉsinhϕ , (4)

where tanhϕ = v
c ∈ R determines the rapidity of the boost in the direction of the unit

vector ĉ ∈ G1
3. The complex numbers C := R(i) and hyperbolic numbers H = R(u),

where u ̸∈ R and u2 = 1, have many properties in common [14].
A couple more formulas, relating vector cross and dot products to the geometric

product, are
a∧b∧ c := a · (b× c)I = I det[a,b,c],

and
a · (b∧ c) := (a ·b)c− (a · c)b =−a× (b× c).

The triple vector products a∧b∧ c and a · (b∧ c) are directly related to the geometric
product by the identity

a(b∧ c) = a · (b∧ c)+a∧ (b∧ c),

where
a · (b∧ c) :=

1
2

(
a(b∧ c)− (b∧ c)a

)
and

a∧ (b∧ c) :=
1
2

(
a(b∧ c)+(b∧ c)a

)
.
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Detailed discussions and proofs of these identities, and their generalizations to higher
dimensional geometric algebras, can be found in [16].

We now return to beautiful results which depend in large part only upon the ge-
ometric product. Thus the reader can relax and fall back upon the familiar rules of
matrix algebra, which are equally valid in the isomorphic geometric algebra.

3 Stereographic projection in R3

Consider the equation

m =
2

â+ e3
=

2(â+ e3)

(â+ e3)2 =
â+ e3

1+ â · e3
, (5)

where â = a/|a| is a unit vector for the vector a ∈ G1
3. Clearly, this equation is well

defined except when â =−e3. Let us solve this equation for â, but first we find that

m · e3 =
( 2

â+ e3

)
· e3 =

(â+ e3) · e3

1+ â · e3
= 1.

Returning to equation (5),

â =
2
m
− e3 =

1
m
(
2−me3

)
=

1
m
(
2+ e3m−2e3 ·m

)
= m̂e3m̂. (6)

Equation (5) can be equivalently expressed by

â = m̂e3m̂ = (m̂e3)e3(e3m̂) = (−Im̂)e3(Im̂), (7)

showing that â is obtained by a rotation of e3 in the plane of m̂∧e3 through an angle of
2θ where cosθ := e3 ·m̂, or equivalently, by a rotation of e3 in the plane of Im̂ through
an angle of π .

It is easily shown that the most general idempotent in G3 has the form

s =
1
2
(1+m+ In) (8)

where
(m+ In)2 = 1 ⇐⇒ m2−n2 = 1 and m ·n = 0,

and I := e123 is the unit pseudoscalar element in G3
3. Consider now idempotents of the

form p = (1+λe1)u+, where λ ∈G0+3
3 . Equating s = p, we find that

(1+m+ In) = (1+λe1)(1+ e3) = 1+λe1− Iλe2 + e3.

Reversing the parity (a vector v→−v) of this equation, gives

(1−m+ In) = (1−λ †e1)(1− e3) = 1−λ †e1− Iλ †e2− e3,
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since the parity change λ− of λ is identical to the reverse (reversing the order of the
geometric product of vectors) λ † of λ .

We can now solve these last two equations for m and In in terms of λ , getting

m =
λ +λ †

2
e1 +

λ −λ †

2I
e2 + e3,

and

In =
λ −λ †

2
e1−

λ +λ †

2I
e2 = m∧ e3,

or
m = x+ e3 and n =−I(m∧ e3) = m× e3, (9)

where x = xe1 + ye2 ∈ R2, the xy-plane. From (8) and (9), it immediately follows that

s =
1
2
(1+m+ In) =

1
2
(1+m+m∧ e3) = mu+. (10)

We also easily find that
m2 = 1+λλ † = 1+x2 ≥ 1

so that
|m|=

√
1+λλ † =

√
1+x2.

A Pauli spinor is a column matrix of two complex components, which we denote by

[α]2 :=
(

α0
α1

)
. Each Pauli spinor [α ]2 corresponds to a minimal left ideal [α]L, which

in turn corresponds to geometric Pauli spinor, or Pauli g-spinor α in the geometric
algebra G3, [17]. Using the spectral basis (1), we have

[α]2 =

(
α0
α1

)
←→ [α]L :=

(
α0 0
α1 0

)
←→ α := (α0 +α1e1)u+ ∈G3. (11)

By factoring out α0 from g-spinor α , we get

α = (α0 +α1e1)u+ = α0(1+
α1

α0
e1)u+ = α0 p = α0mu+,

where p = s was the idempotent defined above for λ = α1
α0

.
By the norm |α| of the g-spinor α , we mean

|α| :=
√

2⟨α†α⟩0 =
√

α0α†
0 +α1α†

1 ≥ 0, (12)

where ⟨g⟩0 means the real number part of the geometric number g ∈G3. More gener-
ally, we define the sesquilinear inner product between the spinors α ,β to be

⟨α|β ⟩ := 2⟨α†β ⟩0+3 = α†
0 β0 +α†

1 β1,

where ⟨g⟩0+3 means the scalar and pseudo-scalar parts of the geometric number g ∈
G3.
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Figure 2: Stereographic Projection from the South Pole to the xy-plane.

From equations (8) and (12), it follows that for λ = α−1
0 α1,

α = α0s = α0

√
1+λλ †m̂u+ = ρeIθ m̂u+ = ρeIθ â+m̂,

where
eIθ :=

α0√
α0α†

0

, ρ :=
√

α0α†
0 +α1α†

1 ,

and â+ := m̂u+m̂. Equation (5) has an immediate interpretation on the Riemann sphere
centered at the origin. Figure 2 shows a cross-section of the Riemann 2-sphere, taken
in the plane of the bivector m∧ e3, through the origin. We see that the stereographic
projection from the South pole at the point −e3, to the point â on the Riemann sphere,
passes through the point x = pro j(m) of the point m onto the xy-plane through the
origin with the normal vector e3. Stereographic projection is just one example of con-
formal mappings, which have important generalizations to higher dimensions [15, 16].

We can now simply answer a basic question in quantum mechanics. If a spin 1
2 -

particle is prepared in a Pauli g-state α , what is the probability of finding it in a Pauli
g-state β immediately thereafter? We calculate

⟨β |α⟩⟨α |β ⟩= 2
⟨
(α†β )†(α†β )

⟩
0+3

= 2
⟨

u+m̂bm̂au+m̂am̂bu+
⟩

0+3

= 2⟨m̂bb̂+â+b̂+m̂b⟩0+3

= ⟨(1+ â · b̂)u+⟩0+3 =
1
2
(1+ â · b̂). (13)

This relationship can be directly expressed in terms of ma and mb. Using (6), for
â = 2

ma
− e3 and b̂ = 2

mb
− e3, a short calculation gives the result

1− (ma−mb)
2

m2
am2

b
=

1
2
(1+ â · b̂)
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⇐⇒ (ma−mb)
2

m2
am2

b
=

1
2
(1− â · b̂), (14)

showing that the probability of finding the particle in that Pauli g-state β is directly
related to the Euclidean distance between the points ma and mb.

Clearly, when b̂ =−â, the expression in (14) simplifies to

(ma−mb)
2

m2
am2

b
= 1.

This will occur when mb := 1
ma∧e3

ma, for which case

b̂ = m̂be3m̂b =−m̂ae3m̂a =−â and mb ·ma = 0.

Writing ma = xa + e3 for xa ∈ R2,

mb = xb + e3 =
1

xae3
(xa + e3)

=
e3x
x2 (xa + e3) =−

1
xa

+ e3. (15)

This means that a spin 1
2 -particle prepared in the state ma will have a zero probability

of being found in the state mb, for a measurement taken immediately afterwards. It is
worthwhile mentioning that these ideas can be naturally generalized to Dirac spinors
[18], [19].

4 First course in special relativity
Let us now try to fit together all the pieces we have been dealing with into a coherent
language for special relativity. Special relativity was first put forth as a basic theory
of the physical universe by Albert Einstein in his famous 1905 paper [5, p. 35-65], al-
though the basic ideas had been put forward in different forms by Lorentz and Poincare.

By an inertial system or rest frame of an observer, we mean a set of three orthonor-
mal (anti-commuting) geometric numbers {e1,e2,e3} ∈ G3, oriented by the property
that

e123 := e1e2e3 = I.

These numbers represent three orthonormal relative vectors along the xyz-coordinate
axes of an observer, and generate the relative geometric algebra G3 := R(e1,e2,e3) of
that observer. The relative geometric algebra G′3 = R(e′1,e′2,e′3) of any other observer
in another rest-frame {e′1,e′2,e′3}, is no more than a repartitioning of the elements of
G3 into relative vectors and relative bivectors. In other words, what one observer calls
a vector in his relative geometric algebra represents a mixture of a vector and a bivector
in the geometric algebra of an observer in a different inertial system. But all of the ob-
servers agree on the element called the unit pseudoscalar I := e123 = e′123, the oriented
volume element of space-time [12]. In Figure 3, a Lorentz boost in the direction of the
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Figure 3: The vector e1 is rotated in the xy-plane of e12 into the vector e′1. The vector
e1 is boosted into the relative vector e′′1 of the relative plane of the relative bivector
e′′12 = e′′1e2. The relative plane of e′′12 has the relative velocity of v

c = e2 tanhϕ with
respect to the plane of e12, where c is the speed of light. Note that the bivector axes
Ie3 = e12 is shown and not the z-axes e3.

vector e2 boosts the relative Euclidean plane e12 of the first observer into the relative
Euclidean plane e′′12 of the second observer.

A space-time event is named by a point X = ct+x∈G0+1
3 , where the real number t

is the time of the event and the position vector x is the place of the event. The constant
c is the velocity of light in empty space. The set H := {X | X = ct +x} of all events,
both past t < 0, present t = 0 and future t > 0, is called the event horizon with respect
to any observer in that rest frame. The world line of an observer at the spacial origin
x = 0 of his rest frame is X0 = ct. It should be mentioned that there is another way
in employing the geometric algebra G3 in the formulation of special relativity. In the
article [1], the approach used here is referred to as the “absolute” Algebra of Physical
Space (APS), in contrast to the alternative approach called the “relative” APS.

Suppose now that we have a second observer X ′0 = ct ′ who is moving at a constant
velocity v = dx

dt , as measured by the first observer, and suppose that at t = 0, X ′ = 0,
the origin of space-time. Then the world line of the second observer is

X = ct + tv = ct
(

1+
v
c

)
= ct

√
1− v2

c2 eϕ v̂

= ct ′eϕ v̂ = X ′0eϕ v̂,

or equivalently,

t =
t ′√

1− v2

c2

and
v
c
= v̂ tanhϕ . (16)

This means that X ′0 = ct ′ = Xe−ϕ v̂. Multiplying X on the right by e−ϕ v̂, transforms
away the velocity v as measured in the first inertial system.
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The defining principle of special relativity is that the space-time interval, is inde-
pendent of the observer that is measuring it, regardless of any relative velocity. The
space-time interval |X1−X2| between two events X1 = ct1 +x1 and X2 = ct2 +x2 is

|X1−X2| :=
√
|(X1−X2)(X1−X2)∗|

=
√
|c2(t1− t2)2− (x1−x2)2|. (17)

Note that the space-time interval between two events X1 and X2 reduces to the ordinary
Euclidean distance |x1− x2|, if the events are simultaneous at the same time t. Note
also that the time dilation of t with respect to t ′, by the factor γ := coshϕ = 1√

1− v2
c2

, is

at the heart of the so-called twin paradox of special relativity.
We have seen in (16) that the mapping

X ′ = Xe−ϕ v̂ = γ(ct +x)(1− v
c
), (18)

transforms away the velocity for a particle with world line X = ct+ tv. More generally,
for two events X1 = ct1 + x1 and X2 = ct2 +x2 in H , and corresponding events X ′1 =
ct ′1 +x′1 and X ′2 = ct ′2 +x′2 in H ′, related by the mapping (18), we find that

(X ′1−X ′2)(X
′
1−X ′2)

∗ = (X1−X2)(X1−X2)
∗,

so the space-time interval between two events is independent of the observer who is
measuring it.

Let us study the mapping X ′ = Xe−ϕ v̂ more closely. Decomposing

x = (xv̂)v̂ = (x · v̂)v̂+(x∧ v̂)v̂ = x∥+x⊥,

we find that
ct ′+x′ = γ(ct +x∥+x⊥)(1−

v
c
)

= γ(ct−x · v
c
)+ γ

(
x∥− tv

)
+x⊥γ

(
1− v

c

)
,

so that t ′ = γ(t− x·v
c2 ) and

x′ = γ
(

x− tv− I(x− tv)× v
c

)
= e

1
2 ϕ v̂

(
γ(x∥− tv)+x⊥

)
e−

1
2 ϕ v̂. (19)

The last expression for x′ shows that x′ is a position vector in the rest-frame of H ′, as
would be expected.

Introducing the new variable r = x− tv, the expression (19) takes the form

x′ = γ
(

x− tv− I(x− tv)× v
c

)
= γ

(
r− Ir× v

c

)
, (20)
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Figure 4: In the event horizon H , the charge q is located at the point tv, and the
electromagnetic field is observed at the point x. In H ′ the charge is located at the
spacial origin 0′, and the electric field is observed at the point x′. The time coordinates
ct and ct ′ are suppressed.

which we use to calculate

|x′|=
√
|x′|2 = γ|r|

√
1− v2

c2 sin2 θ ,

where θ is the angle between the vectors r and v.
The equation (20) is interesting from the point of a physicist. Suppose that a moving

electric point charge is located on the world line X = ct(1+ v
c ), then an observer on the

world line X ′ = ct ′+x′, at rest in the space-time horizon H ′, will only see a Coulomb
electric field E ′ = κ x′

|x′|3 , whereas the observer on the world line X = ct +x, at rest in
the space-time horizon H , will see the electromagnetic field

F = κ
x′

|x′|3
= E + IB,

where
E =

κr

γ2|r|3
(

1− v2

c2 sin2 θ
) 3

2
, and B =−E× v

c
,

and κ is a constant depending upon the charge and the system of units used, [9, pp.
2,381]. This is the relativistic generalization of the classical Biot-Savart Law, see Fig-
ure 4.

5 Composition of Lorentz boosts and rotations
We now give an important formula for the product of Lorentz boosts of the form

eϕ1â1 =
1+a1√

1−a2
1

and eϕ2â2 =
1+a2√

1−a2
2
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where |a1|< 1 and |a2|< 1, and ϕ1 > 0, ϕ2 > 0. We now show that

eϕ1â1 eϕ2â2 = eϕ b̂1eθ Ib̂2 , (21)

where

θ = tan−1 |a1×a2|√
1+a1 ·a2

, ϕ = tanh−1 |a1 +a2|√
a2

1a2
2 +2a1 ·a2 +1

,

b̂1 =
1+a2

2 +2a1 ·a2

1+a2
1a2

2 +2a1 ·a2
a1 +

1−a2
1

1+a2
1a2

2 +2a1 ·a2
a2

and
b̂2 =

a1×a2

|a1×a2|
.

The proof of (21) follows by expanding out both sides of this equation and equating
scalar, vector, and bivector parts. The formulas for the angles θ and ϕ follow directly
from

tan2 θ =
(a1×a2)

2

(1+a1 ·a2)2

and

(1+ tan2 θ) tanh2 ϕ =
(a1 +a2)

2

(1+a1 ·a2)2 .

We also calculate

coshϕ =

√
a2

1a2
2 +2a1 ·a2 +1√

(1−a2
1)(1−a2

2)
,

and

sinhϕ =
|a1 +a2|√

(1−a2
1)(1−a2

2)
.

Note also that
eϕ b̂1eθ Ib̂2 = eθ Ib̂2(e−θ Ib̂2eϕ b̂1eθ Îb2) = eθ Ib̂2eϕ b̂′1 ,

for b̂′1 = b̂1e2θ Ib̂2 .
Similarly, the product of two Euclidean rotations is found to be

eIâ1θ1 eIâ2θ2 = eIb̂θ , (22)

where
θ = cos−1 (cosθ1 cosθ2− â1 · â2 sinθ1 sinθ2

)
,

and
b̂ =

â1 sinθ1 cosθ2 + â2 cosθ1 sinθ2− â1× â2 sinθ1 sinθ2

(cosθ1 cosθ2− â1 · â2 sinθ1 sinθ2) tanθ3
. (23)
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6 Minkowski spacetime
There is a direct and very beautiful relationship between the geometric algebra G3 =
R(e1,e2,e3) of any observer {e1,e2,e3} and the Dirac algebra

G1,3 = R(γ0,γ1,γ2,γ3)

of spacetime, also known as the spacetime algebra of Minkowski spacetime [8]. The
Minkowski spacetime vectors γµ obey the rules

γ2
0 = 1, γ2

1 = γ2
2 = γ2

3 =−1

and are mutually anticommuting, γµ γν = −γν γµ for µ ̸= ν over the values µ,ν ∈
{0,1,2,3}.

Noting that a vector v∈G1
3 in the space of an observer, with the ticking of the local

clock, is sweeping out a bivector in spacetime, we factor the space vector v ∈G1
3 into

the spacetime bivector v = v∧ γ0 ∈ G2
1,3 in Minkowski spacetime. Each local inertial

system corresponds to a unique timelike vector γ0. Thus the local inertial system {ek =
γk∧γ0}3

k=1 is related to the local inertial system {e′k = γ ′k∧γ ′0}3
k=1 by the mapping (19),

so that
γ ′µ = e

1
2 ϕ v̂γµ e−

1
2 ϕ v̂, for µ ∈ {0,1,2,3}.

In summary,
G3 = R(e1,e2,e3) = R(γ1γ0,γ2γ0,γ3γ0) =G+

1,3

where G+
1.3 denotes the even sub-algebra of the spacetime algebra G1,3.

7 Hopf Fibration
The Hopf fibration has generated considerable interest in the mathematics and physics
communities. A nice treatment using quaternions can be found in [10]. Let us see
how it can be expressed in the even more powerful geometric algebra G3 whose even
sub-algebra G+

3 is isomorphic to the quaternions, as has been previously noted.
The unit sphere S3 can be defined by

S3 = {R̂ ∈G0+2
3 | R̂ = r0 + Ir, and R̂R̂† = 1},

for r0 ∈R, r=∑3
k=1 rkek ∈R3, and I = e123. For e3 ∈G1

3, a mapping S3→ S2 is defined
by

S2 = {R̂e3R̂†| R̂ ∈ S3},
which is just the statement that any unit vector â ∈ S2 can be obtained by a rotation of
the vector e3. Now note that the set of all points Ŝ ∈ S3 which map to R̂e3R̂†, given by
Ŝ = R̂eIe3θ , for 0≤ θ ≤ π , is a circle in S3, since clearly ŜŜ† = 1, and

Ŝe3Ŝ† = (−Ŝ)e3(−Ŝ†) = R̂eie3θ e3e−Ie3θ R̂† = R̂e3R̂†.

We have seen in (7) that

â = m̂e3m̂ =−Im̂e3Im̂ = (m̂e3)e3(e3m̂),
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is a way of expressing stereographic projection from the South Pole at−e3 to the point
x ∈R2 for m = x+e3, where â ∈ S2 is on the ray connecting −e3 and x. The points m
and â are related by the equation

m =
2

â+ e3
, (24)

for all points â ̸=−e3.
The unit sphere S3 is also defined in G4 = R(e0,e1,e2,e3), by

S3 = {s =
3

∑
µ=0

sµ eµ | s ∈G1
4,0 and s2 = 1},

and (24) applied to S3→ R3 gives

M =
2

ŝ+ e0
= x+ e0 ⇐⇒ ŝ = M̂e0M̂,

where ŝ ∈ S3, and

x = (M∧ e0) · e0 =
(ŝ∧ e0) · e0

1+ e0 · ŝ
∈ R3 (25)

is the stereographic projection of M ∈ S3 from the south pole at −e0 ∈ S3 into x ∈ R3.
Let r̂ ∈ S2, r̂ ̸=−e3. Then

R̂ =
√

r̂e3 =
1+ r̂e3√

2(1+ r̂ · e3)
∈ S3

satisfies the property that

R̂e3R̂† = R̂2e3 = r̂e3e3 = r̂, (26)

and the most general element ±Ŝ ∈ S3 which has this property is the element

Ŝ = R̂eIe3θ =
1+ r̂e3√

2(1+ r̂ · e3)
(cosθ + Ie3 sinθ)

=
(1+ r̂ · e3)cosθ + I

(
r̂× e3 cosθ +(r̂+ e3)sinθ

)√
2(1+ r̂ · e3)

, (27)

for 0 ≤ θ < π . If we now apply the stereographic projection (25) to ŝ = Ŝ ∈ S3, we
obtain

x =
r̂× e3 cosθ +(r̂+ e3)sinθ√
2(1+ r̂ · e3)+(1+ r̂ · e3)cosθ

. (28)

In defining the mappings (26) and (27), we excluded the point r̂ = −e3. In this
special case, we define

R̂ =
√

(−e3)e3 =
√
−1 := Ie1,
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Figure 5: The Hopf fibers are linked circles on the S3, each circle corresponding to a
single point in S2 under the Hopf mapping h(S3)→ S2. Under stereographic projection
p(S3)→ R3, the linked circles in S3 are projected to linked circles in R3.

Figure 6: Pictured is the Hopf fibration in R3, which is the stereographic projection
from S3. Each colored point on the Riemann sphere, shown in the lower right, corre-
sponds to a circle (or straight line) of the same color in R3. In particular, the blue point
at the north pole, corresponds to the blue vertical line (a circle of infinite diameter),
and the yellow point at the south pole, corresponds to the yellow circle at the equator.
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so that
Ŝ = Ie1eIe3θ = I(e1 cosθ + e2 sinθ). (29)

Clearly, Ŝe3Ŝ† =−e3 for each 0≤ θ < π . As a stereographic projection, the mapping
(28) takes circles into circles, except for r̂ = e3 when the unit circle (29) in S3 projects
to the line x = te3 through the north pole of S2. Now note that any unit circle (27),
which projects to (28), can be mapped to the unit circle (29) simply by multiplying
(27) on the left by Ie1R̂†, giving

Ie1R̂†(R̂eIe3θ ) = Ie1eIe3θ .

The circle in (28) crosses the e12 plane when θ = 0,π , or when

x2 =
1− r3

r3 +3±2
√

2(1+ r3)
.

A closer analysis shows that the circle defined by (28) is linked to the unit circle in the
xy-plane, because when θ = 0, x2 < 1 and when θ = π , x2 > 1. This follows from the
fact that for −1 < r3 < 1,

1− r3

r3 +3+2
√

2(1+ r3)
=

r3 +3−2
√

2(1+ r3)

1− r3
.

As a result of these observations, it follows that any two circles on the hypersphere S3

are linked because the mapping that takes one of them to the unit circle when stere-
ographically projected into R3, also takes the other one to a circle which when stere-
ographically projected into R3 is linked to the unit circle in R2. An overview of the
mappings which make up the Hopf fibration is given in Figure 5, and the Hopf fibration
in R3 is pictured in Figure 6.

Acknowledgement
I thank Universidad de Las Americas-Puebla for many years of support.

References
[1] W.E. Baylis, G. Sobczyk, Relativity in Clifford’s Geometic Algebras of Space and

Spacetime, International Journal of Theoretical Physics 43, 10 (Oct. 2004), 2061-
2079.

[2] W.K. Clifford, 1845-1879, Wikipedia,

https://en.wikipedia.org/wiki/William_Kingdon_Clifford

[3] M.J. Crowe, A History of Vector Analysis: The Evolution of the Ideal of a Vectorial
System, Dover 1985.

16



https://www.math.ucdavis.edu/˜temple/MAT21D/

SUPPLEMENTARY-ARTICLES/Crowe_History-of-Vectors.pdf

[4] T. Dantzig, NUMBER: The Language of Science,

[5] H.A. Lorentz, A. Einstein, H. Minkowski, H. Weyl, The Principle of Relativity,
Translated by W. Perrett and G.B. Jeffery, Dover, 1923.

[6] H. Grassmann, Extension Theory, A co-publication of the AMS and the London
Mathematical Society.

http://www.ams.org/bookstore-getitem/item=HMATH-19

[7] W.R. Hamilton, 1805-1865, Wikipedia.

https://en.wikipedia.org/wiki/William_Rowan_Hamilton

[8] D. Hestenes, Spacetime Algebra, Gordon and Breach 1966.

[9] J.D. Jackson, Classical Electrodynamics, John Wiley & Sons, Inc., N.Y. 1962.

[10] D.W. Lyons, An Elementary Introduction to the Hopf Fibration, Mathematics
Magazine, Vol. 76, No. 2, April 2003, pp. 87-98.

http://nilesjohnson.net/hopf-articles

/Lyons_Elem-intro-Hopf-fibration.pdf

[11] Pauli Matrices, Wikipedia.

https://en.wikipedia.org/wiki/Pauli_matrices

[12] G. Sobczyk, Spacetime Vector Analysis, Physics Letters A, Vol 84A, p.45-49,
1981.

[13] G. Sobczyk, Unipotents, Idempotents, and a Spinor Basis for Matrices, Advances
in Applied Clifford Algebras, Vol. 2, No. 1, p.53-64, July 1992.

[14] G. Sobczyk, Hyperbolic Number Plane, The College Mathematics Journal, Vol.
26, No. 4, pp.268-280, September 1995.

[15] G. Sobczyk, Conformal Mappings in Geometric Algebra, Notices of the AMS,
Volume 59, Number 2, p.264-273, 2012.

[16] G. Sobczyk, New Foundations in Mathematics: The Geometric Concept of Num-
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